799 resultados para Bone histomorphometry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>An evaluation was made of the local action of alendronate sodium (A), hydroxyapatite (HA) and the association of both substances (A + HA), in different molar concentrations, on the femur bone repair of ovariectomized rats. Ninety-eight animals were divided into seven groups: control (C), starch (S), alendronate 1 mol (A1), alendronate 2 mols (A2), hydroxyapatite 1 mol (HA1), hydroxyapatite 2 mols (HA2) and the association of alendronate + hydroxyapatite (A + HA). Rats weighing about 250 g were ovariectomized and 2.5-mm diameter bone defects were made on the left femur 30 days later. Each experimental group had defects filled with appropriate material, except for group C (control). The animals were killed 7 and 21 days after surgery. Histological, histomorphometric and statistical analyses of bone neoformation in the bone defect site were performed. From the histological standpoint, the major differences occurred after 21 days. All specimens in groups C, S, HA1 and HA2 presented linear closure of the bone defect, and most animals in groups A1, A2 and A + HA showed no bone neoformation in the central area of the defect. No statistically significant difference was found among the experimental groups after 7 days; after 21 days, group HA2 presented the highest amount of neoformed bone. There was no significant difference among groups A1, A2 and A + HA in the two study periods. It was concluded that alendronate, either isolated or in association with hydroxyapatite, had an adverse effect on bone repair in this experimental model. Moreover, the hydroxyapatite used here proved to be biocompatible and osteoconductive, with group HA2 showing the best results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe the healing of marginal defects below or above 1 mm of dimension around submerged implants in a dog model.Material and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Two recipient sites were prepared and the marginal 5mm were widened to such an extent to obtain, after implant installation, a marginal gap of 0.5mm at the mesial site (small defect) and of 1.25mm at the distal site (large defect). Titanium healing caps were affixed to the implants and the flaps were sutured allowing a fully submerged healing. The experimental procedures were subsequently performed in the left side of the mandible. The timing of the experiments and sacrifices were planned in such a way to obtain biopsies representing the healing after 5, 10, 20 and 30 days. Ground sections were prepared and histomorphometrically analyzed.Results: The filling of the defect with newly formed bone was incomplete after 1 month of healing in all specimens. Bone formation occurred from the base and the lateral walls of the defects. A larger volume of new bone was formed in the large compared with the small defects. Most of the new bone at the large defect was formed between the 10- and the 20-day period of healing. After 1 month of healing, the outline of the newly formed bone was, however, located at a similar distance from the implant surface (about 0.4mm) at both defect types. Only minor newly formed bone in contact with the implant, starting from the base of the defects, was seen at the large defects (about 0.8mm) while a larger amount was detected at the small defects (about 2.2 mm).Conclusion: Marginal defects around titanium implants appeared to regenerate in 20-30 days by means of a distance osteogenesis. The bone fill of the defects was, however, incomplete after 1 month.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Recent clinical studies have described maxillary sinus floor augmentation by simply elevating the maxillary sinus membrane without the use of adjunctive grafting materials. Purpose: This experimental study aimed at comparing the histologic outcomes of sinus membrane elevation and simultaneous placement of implants with and without adjunctive autogenous bone grafts. The purpose was also to investigate the role played by the implant surface in osseointegration under such circumstances. Materials and Methods: Four tufted capuchin primates had all upper premolars and the first molar extracted bilaterally. Four months later, the animals underwent maxillary sinus membrane elevation surgery using a replaceable bone window technique. The schneiderian membrane was kept elevated by insertion of two implants (turned and oxidized, Brånemark System®, Nobel Biocare AB, Göteborg, Sweden) in both sinuses. The right sinus was left with no additional treatment, whereas the left sinus was filled with autogenous bone graft. Implant stability was assessed through resonance frequency analysis (Osstell™, Integration Diagnostics AB, Göteborg, Sweden) at installation and at sacrifice. The pattern of bone formation in the experimental sites and related to the different implant surfaces was investigated using fluorochromes. The animals were sacrificed 6 months after the maxillary sinus floor augmentation procedure for histology and histomorphometry (bone-implant contact, bone area in threads, and bone area in rectangle). Results: The results showed no differences between membrane-elevated and grafted sites regarding implant stability, bone-implant contacts, and bone area within and outside implant threads. The oxidized implants exhibited improved integration compared with turned ones as higher values of bone-implant contact and bone area within threads were observed. Conclusions: The amount of augmented bone tissue in the maxillary sinus after sinus membrane elevation with or without adjunctive autogenous bone grafts does not differ after 6 months of healing. New bone is frequently deposited in contact with the schneiderian membrane in coagulum-alone sites, indicating the osteoinductive potential of the membrane. Oxidized implants show a stronger bone tissue response than turned implants in sinus floor augmentation procedures. © 2006 Blackwell Publishing, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to present a possible carrier for MTA, monoolein gel, with the objective to maintain this material in the place that was inserted and verify if this procedure is able to optimize its action. The data were evaluated by histomorphometric method and submitted to statistical analysis. The histological responses observed in this study indicate that the MTA is a reliable material and should be considered effective in bone periapical defects and the monoolein gel was capable to maintain the MTA in situ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Bone maintenance after mandibular reconstruction with autogenous iliac crest may be disappointing due to extensive resorption in the long term. The potential of the guided-bone regeneration (GBR) technique to enhance the healing process in segmental defects lacks comprehensive scientific documentation. This study aimed to investigate the influence of polylactide membrane permeability on the fate of iliac bone graft (BG) used to treat mandibular segmental defects. Materials and Methods: Unilateral 10-mm-wide segmental defects were created through the mandibles of 34 mongrel dogs. All defects were mechanically stabilized, and the animals were divided into 6 treatment groups: control, BG alone, microporous membrane (poly L/DL-lactide 80/20%) (Mi); Mi plus BG; microporous laser-perforated (15 cm2 ratio) membrane (Mip), and Mip plus BG. Calcein fluorochrome was injected intravenously at 3 months, and animal euthanasia was carried out at 6 months postoperatively. Results: Histomorphometry showed that BG protected by Mip was consistently related to larger amounts of bone compared with other groups (P ≤ .0001). No difference was found between defects treated with Mip alone and BG alone. Mi alone rendered the least bone area and reduced the amount of grafted bone to control levels. Data from bone labeling indicated that the bone formation process was incipient in the BG group at 3 months postoperatively regardless of whether or not it was covered by membrane. In contrast, GBR with Mip tended to enhance bone formation activity at 3 months. Conclusions: The use of Mip alone could be a useful alternative to BG. The combination of Mip membrane and BG efficiently delivered increased bone amounts in segmental defects compared with other treatment modalities. © 2008 American Association of Oral and Maxillofacial Surgeons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study histomorphometrically analyzed the effect of autogenous platelet-rich plasma (PRP) on healing of fresh frozen bone allograft (FFBA) in bony defects in rat calvaria. Materials and Methods: A 5mm-diameter defect was created in the calvarium of 30 rats. Animals were divided into three groups: C (defect was filled by blood clot only), FFBA (defect was filled with 0.01mL of FFBA), and FFBA/PRP (defect was filled with 0.01mL of FFBA combined with 100μL of PRP). All animals were euthanized at 30 days postoperatively. Histomorphometry and histology analyses were performed. Data were statistically analyzed (analysis of variance, Tukey, p<.05). Results: FFBA had a statistically smaller new bone area than groups FFBA/PRP and C. No statistically significant differences were observed between groups FFBA and FFBA/PRP with regard to remaining bone graft particle area. Conclusion: It can be concluded that (1) PRP improved the incorporation of FFBA, increasing the amount of new bone formed; (2) PRP has not influenced the resorption of nonviable particles of the FFBA; and (3) presence of remaining FFBA particles might have accounted for the smaller amount of new bone observed in group FFBA when compared with control group. © 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the physicochemical characteristics of calcium phosphate based bioactive ceramics of different compositions and blends presenting similar micro/nanoporosity and micrometer scale surface texture were characterized and evaluated in an in vivo model. Prior to the animal experiment, the porosity, surface area, particle size distribution, phase quantification, and dissolution of the materials tested were evaluated. The bone regenerative properties of the materials were evaluated using a rabbit calvaria model. After 2, 4, and 8 weeks, the animals were sacrificed and all samples were subjected to histologic observation and histomorphometric analysis. The material characterization showed that all materials tested presented variation in particle size, porosity and composition with different degrees of HA/TCP/lower stoichiometry phase ratios. Histologically, the calvarial defects presented temporal bone filling suggesting that all material groups were biocompatible and osteoconductive. Among the different materials tested, there were significant differences found in the amount of bone formation as a function of time. At 8 weeks, the micro/nanoporous material presenting similar to 55,TCP:45%,HA composition ratio presented higher amounts of new bone regeneration relative to other blends and a decrease in the amount of soft tissue infiltration. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives The objective of this study was to develop a technique for detecting cortical bone dimensional changes in patients with bisphosphonate-related osteonecrosis of the jaw (BRONJ). Study Design Subjects with BRONJ who had cone-beam computed tomography imaging were selected, with age- and gender-matched controls. Mandibular cortical bone measurements to detect bisphosphonate-related cortical bone changes were made inferior to mental foramen, in 3 different ways: within a fixed sized rectangle, in a rectangle varying with the cortical height, and a ratio between area and height. Results Twelve BRONJ cases and 66 controls were evaluated. The cortical bone measurements were significantly higher in cases than controls for all 3 techniques. The bone measurements were strongly associated with BRONJ case status (odds ratio 3.36-7.84). The inter-rater reliability coefficients were high for all techniques (0.71-0.90). Conclusions Mandibular cortical bone measurement is a potentially useful tool in the detection of bone dimensional changes caused by bisphosphonates. Long-term administration of bisphosphonates (BPs) affects bone quality and metabolism following accumulation in bone.1 Since the first cases of bisphosphonate-related osteonecrosis of the jaw (BRONJ) were published in 2003,2 there has been a search for factors that can predict the onset of the condition. Oral and intravenous BPs reduce bone resorption, increase mineral content of bone, and alter bony architecture.3, 4, 5 and 6 Previous studies have demonstrated these changes both radiographically and following histologic analysis.1, 3, 7, 8, 9 and 10 The BP-related jaw changes may present radiological features, such as thickening of lamina dura and cortical borders, diffuse sclerosis, and narrowing of the mandibular canal3 and 11; however, oral radiographs of patients taking BPs do not consistently show radiographic changes to the jaws.11 and 12 The challenge is to find imaging tools that could improve the detection of changes in the bone associated with BP use. Various skeletal radiographic features associated with BRONJ in conventional periapical and panoramic radiographs, computed tomography, magnetic resonance imaging, and nuclear bone scanning have been described.3, 8, 9, 10 and 11 There has also been a search for BP-related quantitative methods for the evaluation of radiographic images, to avoid observer subjectivity in interpretation. Factors thought to be important include trabecular and cortical structure, and bone mineralization.4 Consequently, measurable bone data have been reported in subjects taking BPs through many techniques, including bone density, architecture, and cortical bone thickness.1, 4, 7 and 13 Trabecular microarchitecture of postmenopausal women has been evaluated with noninvasive techniques, such as high-resolution magnetic resonance images showing less deterioration of the bone 1 year after initiation of oral BP therapy.4 A decrease in bone turnover and a trend for an increase in the bone wall thickness has been detected by histomorphometry in subjects taking BPs.1 Alterations in the cortical structure of the second metacarpal have been detected in digital x-ray radiogrammetry of postmenopausal women treated with BPs.7 Mandibular cortical width may be measured on dental panoramic radiographs, and it has been suggested as a screening tool for referring patients for bone densitometry for osteoporosis investigation.14 and 15 Inhibition of the intracortical bone remodeling in the mandible of mice taking BPs has been reported.16 Thus, imaging evaluation of the mandibular cortical bone could be a biologically plausible way to detect BP bone alterations. Computed tomography can assess both cortical and trabecular bone characteristics. Cone-beam computed tomography (CBCT) can provide 3-dimensional information, while using lower doses and costing less than conventional CT. The CBCT images have been studied as a tool for the measurement of trabecular bone in patients with BRONJ.13 Therefore, cortical bone measurements on CBCT of the jaws might also help to understand bone changes in patients with BRONJ. There is no standard in quantifying dimensional changes of mandibular cortical bone. We explored several different approaches to take into consideration possible changes in length, area, and volume. These led to the 3 techniques developed in this study. This article reports a matched case-control study in which mandibular cortical bone was measured on CBCT images of subjects with BRONJ and controls. The aim of the study was to explore the usefulness of 3 techniques for detecting mandibular cortical bone dimensional changes caused by BP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe the healing of marginal defects below or above 1 mm of dimension around submerged implants in a dog model. Material and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Two recipient sites were prepared and the marginal 5mm were widened to such an extent to obtain, after implant installation, a marginal gap of 0.5mm at the mesial site (small defect) and of 1.25mm at the distal site (large defect). Titanium healing caps were affixed to the implants and the flaps were sutured allowing a fully submerged healing. The experimental procedures were subsequently performed in the left side of the mandible. The timing of the experiments and sacrifices were planned in such a way to obtain biopsies representing the healing after 5, 10, 20 and 30 days. Ground sections were prepared and histomorphometrically analyzed. Results: The filling of the defect with newly formed bone was incomplete after 1 month of healing in all specimens. Bone formation occurred from the base and the lateral walls of the defects. A larger volume of new bone was formed in the large compared with the small defects. Most of the new bone at the large defect was formed between the 10- and the 20-day period of healing. After 1 month of healing, the outline of the newly formed bone was, however, located at a similar distance from the implant surface (about 0.4mm) at both defect types. Only minor newly formed bone in contact with the implant, starting from the base of the defects, was seen at the large defects (about 0.8mm) while a larger amount was detected at the small defects (about 2.2 mm). Conclusion: Marginal defects around titanium implants appeared to regenerate in 20-30 days by means of a distance osteogenesis. The bone fill of the defects was, however, incomplete after 1 month.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. (C) 2011 Elsevier Inc. All rights reserved.