1000 resultados para Boilers, Bagasse, CFD, Erosion, Corrosion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to the use of traditional fossil fuels (coal, oil, natural gas), combustion of biomass and waste fuels has several environmental and economic advantages for heat and power generation. However, biomass and waste fuels might contain halogens (Cl, Br, F), alkali metals (Na, K) and heavy metals (Zn, Pb), which may cause harmful emissions and corrosion problems. Hightemperature corrosion occurs typically on furnace waterwalls and superheaters. The corrosion of the boiler tube materials limits the increase of thermal efficiency of steam boilers and leads to costly shutdowns and repairs. In recent years, some concerns have been raised about halogen (Cl, Br, and F)-related hightemperature corrosion in biomass- and waste-fired boilers. Chlorine-related high-temperature corrosion has been studied extensively. The presence of alkali chlorides in the deposits is believed to play a major role in the corrosion observed in biomass and waste fired boilers. However, there is much less information found in literature on the corrosion effect of bromine and fluorine. According to the literature, bromine is only assumed to play a role similar to chlorine; the role of fluorine is even less understood. In this work, a series of bubbling fluidized bed (BFB) bench-scale tests were carried out to characterize the formation and sulfation behaviors of KCl and KBr in BFB combustion conditions. Furthermore, a series of laboratory tests were carried out to investigate the hightemperature corrosion behaviors of three different superheater steels (10CrMo9-10, AISI 347 and Sanicro 28) exposed to potassium halides in ambient air and wet air (containing 30% H2O). The influence of H2O and O2 on the high-temperature corrosion of steels both with and without a salt (KCl) in three gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2) was also studied. From the bench-scale BFB combustion tests, it was found that HBr has a clearly higher affinity for the available K forming KBr than HCl forming KCl. The tests also indicated that KCl has a higher tendency for sulfation than KBr. From the laboratory corrosion tests in ambient air (also called “dry air” in Paper III and Paper IV), it was found that at relatively low temperatures (≤ 550 °C) the corrosivity of KBr and KF are similar to KCl. At 600 °C, KF showed much stronger corrosivity than KBr and KCl, especially for 10CrMo9-10 and AISI 347. When exposed to KBr or KF, 10CrMo9-10 was durable at least up to 450 °C, while AISI 347 and Sanicro 28 were durable at least up to 550 °C. From the laboratory corrosion tests in wet air (30% H2O), no obvious effect of water vapor was detected at 450 °C. At 550 °C, the influence of water vapor became significant in some cases, but the trend was not consistent. At 550 °C, after exposure with KBr, 10CrMo9-10 suffered from extreme corrosion; after exposure with KF and KCl, the corrosion was less severe, but still high. At 550 °C, local deep pitting corrosion occurred on AISI 347 and Sanicro 28 after exposure with KF. Some formation of K2CrO4 was observed in the oxide layer. At 550 °C, AISI 347 and Sanicro 28 suffered from low corrosion (oxide layer thickness of < 10 μm) after exposure with KBr and KCl. No formation of K2CrO4 was observed. Internal oxidation occurred in the cases of AISI 347 with KBr and KCl. From the laboratory corrosion tests in three different gas atmospheres (2% H2O-30% O2-N2, 2% H2O-2% O2-N2 and 30% H2O-2% O2-N2), it was found that in tests with no salt, no corrosion occurred on AISI 347 and Sanicro 28 up to 600 °C in both the “O2-rich” (2% H2O-30% O2-N2) and “H2O-rich” (30% H2O-2% O2-N2) gas atmospheres; only 10CrMo9-10 showed increased corrosion with increasing temperature. For 10CrMo9-10 in the “O2-rich” atmosphere, the presence of KCl significantly increased the corrosion compared to the “no salt” cases. For 10CrMo9-10 in the “H2O-rich” atmosphere, the presence or absence of KCl did not show any big influence on corrosion. The formation of K2CrO4 was observed only in the case with the “O2-rich” atmosphere. Considering both the results from the BFB tests and the laboratory corrosion tests, if fuels containing Br were to be combusted, the corrosion damage of superheaters would be expected to be higher than if the fuels contain only Cl. Information generated from these studies can be used to help the boiler manufacturers in selecting materials for the most demanding combustion systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tässä työssä perehdytään soodakattiloiden vesikiertomallin rakentamiseen. Työn päätavoitteena on kehittää simulointimallia varten taulukkolaskentapohja, jonka avulla soodakattilan lämpövuotietoja on yksinkertaista ja nopeaa käsitellä ja siirtää Apros 6 -simulointiohjelmaan. Lisäksi tarkoituksena on pyrkiä automatisoimaan työvaiheet mahdollisimman pitkälle, jolloin vesikiertolaskennan tekeminen yksinkertaistuisi, yhtenäistyisi ja tarkentuisi. Tämä on mahdollista Excel- makrojen ja Apros 6:n uusien toimintojen avulla. Apros 6:ssa on nyt mahdollista hyödyntää SCL- komentotiedostoja, joiden avulla sujuva tiedonsiirto Aproksen ja Excelin välillä vodaan toteuttaa. Vesikiertolaskentaan käytettävän datan käsittely on aikaisemmin ollut työlästä ja sen tarkkuus on pitkälti riippunut mallintajasta. Tässä diplomityössä päästään hyödyntämään uusimpia ja realistisempia soodakattiloiden CFD- malleja, joiden avulla pystytään luomaan aikaisempaa tarkemmat lämpövuojakaumat soodakattilan lämpöpinnoille. Tämä muutos parantaa vesikiertolaskennan tarkkuutta. Työn kokeellisessa osassa uutta Excel laskentatyökalua ja uusia lämpövuoarvoja testataan käytännössä. Eräs vanha Apros- vesikiertomalli päivitetään uusilla lämpövuoarvoilla ja sen rakenteeseen tehdään muutoksia tarkkuuden parantamiseksi. Uuden mallin toimivuutta testataan myös 115 %:n kapasiteetilla ja tutkitaan kuinka kyseinen vesikiertopiiri reagoi suurempaan lämpötehoon. Näitä kolmea eri tilannetta vertaillaan toisiinsa ja tarkastellaan eroavaisuuksia niiden vesi-höyrypiireissä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of Raman spectroscopy to the study of the copper chloride minerals nantokite, eriochalcite and claringbullite has enabled the vibrational modes for the CuCl, CuOH and CuOH2 to be determined. Nantokite is characterised by bands at 205 and 155 cm-1 attributed to the transverse and longitudinal optic vibrations. Nantokite also has an intense band at 463 cm-1, eriochalcite at 405 and 390 cm-1 and claringbullite at 511 cm-1. These bands are attributed to CuO stretching modes. Water librational bands at around 672 cm-1 for eriochalcite have been identified and hydroxyl deformation modes of claringbullite at 970, 906 and 815 cm-1 are observed. Spectra of the three minerals are so characteristically different that the minerals are readily identified by Raman spectroscopy. The minerals are often determined in copper corrosion products by X-ray diffraction. Raman spectroscopy offers a rapid, in-situ technique for the identification of these corrosion products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the large quantity of sugarcane grown in Australia, no bagasse is pulped in the country. This is largely because of an established pulp industry based on the abundant native hardwood resources. However, increasing demand for fibre and the limited availability of additional forest areas make bagasse pulping attractive. Issues relating to infrastructure and economics are discussed, and scenarios of acceptable risk identified. It is shown that there should be scope for the production of bleached bagasse pulp in Australia.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SRI has examined the organosolv (organic solvation) pulping of Australian bagasse using technology supplied by Ecopulp. In the process, bagasse is reacted with aqueous ethanol in a digester at elevated temperatures (between 150ºC and 200ºC). The products from the digester are separated using proprietary technology before further processing into a range of saleable products. Test trials were undertaken using two batch digesters; the first capable of pulping about 25 g of wet depithed bagasse and the second, larger samples of about 1.5 kg of wet depithed bagasse. From this study, the unbleached pulp produced from fresh bagasse did not have very good strength properties for the production of corrugated medium for cartons and bleached pulp. In particular, the lignin contents as indicated by the Kappa number for the unbleached pulps are high for making bleached pulp. However, in spite of the high lignin content, it is possible to bleach the pulp to acceptable levels of brightness up to 86.6% ISO. The economics were assessed for three tier pricing (namely low, medium and high price). The economic return for a plant that produces 100 air dry t/d of brownstock pulp is satisfactory for both high and medium pricing levels of pricing. The outcomes from the project justify that work should continue through to either pilot plant or upgraded laboratory facility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soda process was the first chemical pulping method and was patented in 1845. Soda pulping led to kraft pulping, which involves the combined use of sodium hydroxide and sodium sulfide. Today, kraft pulping dominates the chemical pulping industry. However, about 10% of the total chemical pulp produced in the world is made using non-wood material, such as bagasse and wheat straw. The soda process is the preferred method of chemical pulping of non-wood materials, because it is considered to be economically viable on a small scale and for bagasse is compatible with sugarcane processing. With recent developments, the soda process can be designed to produce minimal effluent discharge and the fouling of evaporators by silica precipitation. The aim of this work is to produce bagasse fibres suitable for papermaking and allied applications and to produce sulfur-free lignin for use in specialty applications. A preliminary economic analysis of the soda process for producing commodity silica, lignin and pulp for papermaking is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this experimental study the permeability of Australian bagasse chemical pulps obtained from different bagasse fractions were measured in a simple permeability cell and the results compared to one another as well as to eucalypt, Argentinean bagasse and pine pulps. The pulps were characterised in terms of the permeability parameters, the specific surface area, Sv, and the swelling factor, α. It was found that the bagasse fraction used affects these parameters. Fractionation of whole bagasse prior to pulping produced pulps that have permeability properties that compare favourably with eucalypt pulp. The values of Sv and α for bagasse pulp also depend on whether a constant or a variable Kozeny factor is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bicycle ergometer is a scientific device used by exercise physiologists which attempts to mimic on-road cycling characteristics such as foot technique, EMG activity, VO2, VCO2 and rider cardiology in a laboratory environment. Presently there are no known useful scientific ergometers that mimic these characteristics and are able to provide a satisfactory controlled resistance that is independent of speed. Previous research has suggested the use of a Magneto-Rheological (MR) Fluid as part of the ergometer design, as when used in a rotary brake application it is able to be controlled electronically to increase resistance instantly and independent of speed. In the target application, MR fluids are subject to immense tribological wear and temperature during viscous shearing, and will eventually show some degree of deterioration which is usually manifested as an increase in off-state viscosity. It is not known exactly how the fluid fails, however the amount of deterioration is related to the shear rate, temperature and duration and directly related to the power dissipation. Currently, there is very little literature that investigates the flow and thermal characteristics of MR fluid tribology using CFD. In this paper, we present initial work that aims to improve understanding of MR fluid wear via CFD modelling using Fluent, and results from the model are compared with those obtained from a experimental test rig of an MR fluid-based bicycle ergometer.