933 resultados para Bladder cancer cell lines


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium transporters play vital roles in the transport of calcium ions across cells of the mammary gland and the intestine. One such transporter is the plasma membrane Ca2+-ATPase (PMCA), of which there are 4 different genes (PMCA1-4). In these studies we investigated the hypothesis that the expression of PMCA is altered in HT-29 colon cancer cells during sodium butyrate and post-confluence mediated differentiation. We also investigated if PMCA expression is altered in breast cancer cell lines in an isofrom specific manner. Our results indicate isoform specific changes in PMCA mRNA and protein levels in HT-29 cells during differentiation, using real time RT-PCR and western blotting, respectively. We also observed pronounced alterations in the mRNA levels of the PMCA isoform linked to lactation (PMCA2) in a bank of breast cancer cell lines compared to normal cell lines. Changes in other isoforms were less pronounced. To further study the role of specific calcium transporters we have optimised conditions for the reverse transfection of MCF-7 breast cancer cells using NeoFX (Ambion). Using real time RT-PCR we have confirmed gene knockdown for specific isoforms and have studied the time course of knockdown over 96 hours. We see approximately 68 % inhibition at 24 hours increasing to 84 % 96 hours post-reverse transfection. Our studies suggest that the expression of specific calcium transporter isoforms can be significantly altered in cancer cell lines and that isoform specific inhibition of calcium transporters is possible using reverse transfection of siRNA

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the gemcitabine (dFdC) resistant cell lines manifested high NF?B activity. The NF?B activity can be induced by dFdC and 5-FU exposure. The chemosensitizing effect of disulfiram (DS), an anti-alcoholism drug and NF?B inhibitor, and copper (Cu) on the chemoresistant cell lines was examined. The DS/Cu complex significantly enhanced the cytotoxicity of dFdC (resistant cells: 12.2–1085-fold) and completely reversed the dFdC resistance in the resitant cell lines. The dFdC-induced NF?B activity was markedly inhibited by DS/Cu complex. The data from this study indicated that DS may be used in clinic to improve the therapeutic effect of dFdC in breast and colon cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of 65.4±1.74 μg/ml, 58.4±5.20 μg/ml and 72.0±0.03 μg/ml, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate Cancer is a disease that primarily affects elderly men. The incidence of prostate cancer has been progressively increasing in the western world over the last two decades. Life expectancy and diet are believed to be the main factors contributing to this increase in prevalence. Prostate cancer is a slowly progressing disorder and patients often live for over 10 years after initially being diagnosed with prostate cancer. However, patients with hormone refractory prostate cancer have a poor prognosis and generally do not survive for longer than 2 or 3 years. Hormone refractory prostate cancer is responsible for over 200,000 deaths each year and current chemotherapeutic regimens are only useful as palliative agents. The long-term survival rate is poor and chemotherapy does not significantly increase this. Cell lines derived from hormone refractory tumours usually display elevated resistance to many cytotoxic drugs. The Fas receptor is a membrane bound protein capable of binding to a ligand called Fas ligand. Engagement of Fas receptor with Fas ligand results in clustering of Fas receptor on the plasma membrane of cells. A number of proteins responsible for initiating apoptosis are recruited to the plasma membrane and are activated in response to elevated local concentrations. This series of events initiates a proteolysis cascade and that culminates in the degradation of structural and enzymatic processes and the repackaging of cellular constituents within membrane bound vesicles that can be endocytosed and recycled by surrounding phagocytic cells. The Fas receptor is believed to be a key mechanism by which immune cells can destroy damaged cells. Consequently, resistance to Fas receptor mediated apoptosis often correlates with tumour progression. It has been reported that prostate cancer cell lines display elevated resistance to Fas receptor mediated apoptosis and this correlates with the stage of tumour from which the cell lines were isolated. JNK, a stress-activated protein kinase, has been implicated both with increased survival and increased apoptosis in prostate cancer. Elevated endogenous JNK activity has been demonstrated to correlate with prostate cancer progression. It has been shown that endogenous JNK activity increases the expression of anti-apoptotic proteins and can increase the resistance of prostate cancer cell lines to chemotherapy. In addition, elevated endogenous JNK activity is required for improved proliferation and transformation of a number of epithelial tumours. However, prolonged JNK activation in response to cytotoxic stimuli can increase the sensitivity of cells to apoptosis. Prolonged JNK activity appears to induce the expression of a separate set of genes responsible for promoting apoptosis. Our group has recently shown that activation of JNK by chemotherapeutic drugs can sensitise DU 145 prostate carcinoma cells to Fas receptor mediated apoptosis. In order toidentify novel targets for treating hormone refractory prostate cancer we have investigated the role of JNK in Fas receptor mediated apoptosis. We have demonstrated that prolonged JNK activation is defective in DU 145 cells in response to Fas receptor activation alone. Co-administering anisomycin, a JNK agonist, greatly enhances the ability of DU 145 cells to undergo apoptosis by increasing the rate of Caspase 8 cleavage. We also investigated the role of endogenous JNK activity in Fas receptor mediated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and differential antiproliferative activity of monastrol (1a), oxo-monastrol (1b) and eight oxygenated derivatives 3a,b–6a,b on seven human cancer cell lines are described. For all evaluated cell lines, monastrol (1a) was shown to be more active than its oxo-analogue, except for HT-29 cell line, suggesting the importance of the sulfur atom for the antiproliferative activity. Monastrol (1a) and the thio-derivatives 3a, 4a and 6a displayed relevant antiproliferative properties with 3,4-methylenedioxy derivative 6a being approximately more than 30 times more potent than monastrol (1a) against colon cancer (HT-29) cell line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. It has been reported that the histone deacetylase inhibitor (iHDAc) trichostatin A (TSA) induces an increase in MDR1 gene transcription (ABCB1). This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp). It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a traslational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods. A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry have been used in this study. Results. The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a traslational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5' end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5' end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions. The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we have demonstrated that TSA in fact, differentially regulates both ABCB1 promoters, downregulating the upstream promoter that is responsible for active P-glycoprotein expression. These results suggest that iHDACs such as TSA may in fact potentiate the effects of antitumoral drugs that are substrates of Pgp. Finally, we have also demonstrate that TSA upregulates RUNDC3B mRNA independently of the ABCB1 promoter in use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years marine biotechnology has revealed a crucial role in the future of bioindustry. Among the many marine resources, cyanobacteria have shown great potential in the production of bioactive compounds with diverse applicability. The pharmacological potential of these organisms has been one of the most explored areas in particular its antibacterial, antifungal and anticancer potential. This work was based on the assessment of potential anticancer compound E13010 F 5.4 isolated from marine cyanobacteria strain Synechocystis salina LEGE 06099. Thus the aim of this work was to explore molecular and biochemical mechanisms underlying the bioactivity detected in human cancer cells, specifically in lines RKO colon carcinoma and HT-29. The isolation of the compound was performed from biomass obtained by large-scale culture. To obtain the compound fractionation was carried and confirmation and isolation performed by Nuclear Magnetic Resonance (NMR), Thin Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC). Cell viability assays were performed based on reduction of 3- (4,5-dimetiltiaziol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) to assess the cytotoxic potential of the compound. From the battery of cell lines RKO (colon carcinoma), HT-29 (colorectal adenocarcinoma), MG-63 (osteosarcoma) and T47D (breast carcinoma) the cell lines RKO and HT-29 were selected for elucidation of mechanisms of cytotoxicity. For the elucidation of the mechanisms involved in cytotoxicity the cell lines RKO and HT29 were exposed to the compound. A genomic approach based in the mRNA expression of genes involved in apoptosis and cell cycle by Real-Time PCR and a proteomic approach based on the separation of proteins by two-dimensional electrophoresis (2DGE) was performed. For mRNA expression were selected the genes RPL8, HPRT1, VDAC, SHMT2, CCNE, CCNB1, P21CIP, BCL-2 and BAD and for proteomics isoelectric focussing between 3 – 10 and molecular weight of 19 – 117 kDa separated by polyacrylamide gels (2DGE). The MTT results confirmed the reduction of the cell viability. The RT-PCR results for the expression of genes studied were not yet fully elucidative. For the cell line RKO there was a significant reduction in the expression of the gene P21CIP, and a tendency for reduction in the BAD gene expression and for increased expression of gene CCNB1, pointing to an effort for cell proliferation. In HT-29 cell line, there was a tendency for increase in the expression of P21CIP and BAD, which may explain the reduction in cell viability. The 2DGE results indicate proteomic patterns with differentially altered spots in the treated and control cells with both qualitative and quantitative differences, and differences in response between the RKO and HT-29 cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In colorectal cancer (CRC), two carbohydrate structures are modulated: the Sda antigen, synthesized by B4GALNT2, and sLex antigen, mainly synthesized by FUT6. sLex antigen is often overexpressed and associated with worse prognosis; B4GALNT2/Sda antigen are dramatically downregulated but their role in tumor progression and development is not fully clear. TCGA interrogation revealed a dramatic down-regulation of B4GALNT2 mRNA in CRC, compared with normal samples. Patients with higher B4GALNT2 mRNA in CRC samples displayed longer survival. Yet, methylation and miRNA expression play a relevant role in B4GALNT2 downregulation in CRC. To clarify the mechanisms linking the B4GALNT2/Sda expression level to CRC phenotype, three different CRC cell lines were modified to express B4GALNT2: LS174T cell line, in which the constitutively expressed sLex antigen was partially replaced by Sda; SW480/SW620 pair, both lacking Sda and sLex antigens. In LS174T cells, the expression of B4GALNT2 reduced the ability to grow in poor adherence conditions and the expression of ALDH, a stemness marker. In SW620 cells, B4GALNT2 expression impacted on the main aspects of malignancy. In SW480 cells the expression of B4GALNT2 left unchanged the proliferation rate and the wound healing ability. To clarify the impact of sLex on CRC phenotype, the SW480/SW620 pair were permanently transfected to express FUT6 cDNA. In both cell lines, overexpression of FUT6/sLex boosted the clonogenic ability in standard growth conditions. Conversely, the growth in soft agar and the capacity to close a wound were enhanced only in SW620 cells. Transcriptome analysis of CRC cell lines transfected either with B4GALNT2 or FUT6 showed a relevant impact of both enzymes on gene expression modulation. Overall, current data may help to personalize therapies for CRC patients according to the B4GALNT2 levels and support a causal effect of this glycosyltransferase on reducing malignancy independently of sLex inhibition.