967 resultados para Bivariate Lifetime Data
Resumo:
Birnbaum and Saunders (1969a) introduced a probability distribution which is commonly used in reliability studies For the first time based on this distribution the so-called beta-Birnbaum-Saunders distribution is proposed for fatigue life modeling Various properties of the new model including expansions for the moments moment generating function mean deviations density function of the order statistics and their moments are derived We discuss maximum likelihood estimation of the model s parameters The superiority of the new model is illustrated by means of three failure real data sets (C) 2010 Elsevier B V All rights reserved
Resumo:
The Birnbaum-Saunders regression model is commonly used in reliability studies. We derive a simple matrix formula for second-order covariances of maximum-likelihood estimators in this class of models. The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors. Some simulation results show that the second-order covariances can be quite pronounced in small to moderate sample sizes. We also present empirical applications.
Resumo:
We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.
Resumo:
The family of distributions proposed by Birnbaum and Saunders (1969) can be used to model lifetime data and it is widely applicable to model failure times of fatiguing materials. We give a simple matrix formula of order n(-1/2), where n is the sample size, for the skewness of the distributions of the maximum likelihood estimates of the parameters in Birnbaum-Saunders nonlinear regression models, recently introduced by Lemonte and Cordeiro (2009). The formula is quite suitable for computer implementation, since it involves only simple operations on matrices and vectors, in order to obtain closed-form skewness in a wide range of nonlinear regression models. Empirical and real applications are analyzed and discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We introduce, for the first time, a new class of Birnbaum-Saunders nonlinear regression models potentially useful in lifetime data analysis. The class generalizes the regression model described by Rieck and Nedelman [Rieck, J.R., Nedelman, J.R., 1991. A log-linear model for the Birnbaum-Saunders distribution. Technometrics 33, 51-60]. We discuss maximum-likelihood estimation for the parameters of the model, and derive closed-form expressions for the second-order biases of these estimates. Our formulae are easily computed as ordinary linear regressions and are then used to define bias corrected maximum-likelihood estimates. Some simulation results show that the bias correction scheme yields nearly unbiased estimates without increasing the mean squared errors. Two empirical applications are analysed and discussed. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper, we proposed a flexible cure rate survival model by assuming the number of competing causes of the event of interest following the Conway-Maxwell distribution and the time for the event to follow the generalized gamma distribution. This distribution can be used to model survival data when the hazard rate function is increasing, decreasing, bathtub and unimodal-shaped including some distributions commonly used in lifetime analysis as particular cases. Some appropriate matrices are derived in order to evaluate local influence on the estimates of the parameters by considering different perturbations, and some global influence measurements are also investigated. Finally, data set from the medical area is analysed.
Resumo:
In survival analysis, the response is usually the time until the occurrence of an event of interest, called failure time. The main characteristic of survival data is the presence of censoring which is a partial observation of response. Associated with this information, some models occupy an important position by properly fit several practical situations, among which we can mention the Weibull model. Marshall-Olkin extended form distributions other a basic generalization that enables greater exibility in adjusting lifetime data. This paper presents a simulation study that compares the gradient test and the likelihood ratio test using the Marshall-Olkin extended form Weibull distribution. As a result, there is only a small advantage for the likelihood ratio test
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
In this paper we introduce an extension of the Lindley distribution which offers a more flexible model for lifetime data. Several statistical properties of the distribution are explored, such as the density, (reversed) failure rate, (reversed) mean residual lifetime, moments, order statistics, Bonferroni and Lorenz curves. Estimation using the maximum likelihood and inference of a random sample from the distribution are investigated. A real data application illustrates the performance of the distribution. (C) 2011 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Lemonte and Cordeiro [Birnbaum-Saunders nonlinear regression models, Comput. Stat. Data Anal. 53 (2009), pp. 4441-4452] introduced a class of Birnbaum-Saunders (BS) nonlinear regression models potentially useful in lifetime data analysis. We give a general matrix Bartlett correction formula to improve the likelihood ratio (LR) tests in these models. The formula is simple enough to be used analytically to obtain several closed-form expressions in special cases. Our results generalize those in Lemonte et al. [Improved likelihood inference in Birnbaum-Saunders regressions, Comput. Stat. DataAnal. 54 (2010), pp. 1307-1316], which hold only for the BS linear regression models. We consider Monte Carlo simulations to show that the corrected tests work better than the usual LR tests.
Resumo:
In many applications of lifetime data analysis, it is important to perform inferences about the change-point of the hazard function. The change-point could be a maximum for unimodal hazard functions or a minimum for bathtub forms of hazard functions and is usually of great interest in medical or industrial applications. For lifetime distributions where this change-point of the hazard function can be analytically calculated, its maximum likelihood estimator is easily obtained from the invariance properties of the maximum likelihood estimators. From the asymptotical normality of the maximum likelihood estimators, confidence intervals can also be obtained. Considering the exponentiated Weibull distribution for the lifetime data, we have different forms for the hazard function: constant, increasing, unimodal, decreasing or bathtub forms. This model gives great flexibility of fit, but we do not have analytic expressions for the change-point of the hazard function. In this way, we consider the use of Markov Chain Monte Carlo methods to get posterior summaries for the change-point of the hazard function considering the exponentiated Weibull distribution.
Resumo:
In this article, for the first time, we propose the negative binomial-beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.
Resumo:
En la presente Tesis se ha llevado a cabo el contraste y desarrollo de metodologías que permitan mejorar el cálculo de las avenidas de proyecto y extrema empleadas en el cálculo de la seguridad hidrológica de las presas. En primer lugar se ha abordado el tema del cálculo de las leyes de frecuencia de caudales máximos y su extrapolación a altos periodos de retorno. Esta cuestión es de gran relevancia, ya que la adopción de estándares de seguridad hidrológica para las presas cada vez más exigentes, implica la utilización de periodos de retorno de diseño muy elevados cuya estimación conlleva una gran incertidumbre. Es importante, en consecuencia incorporar al cálculo de los caudales de diseño todas la técnicas disponibles para reducir dicha incertidumbre. Asimismo, es importante hacer una buena selección del modelo estadístico (función de distribución y procedimiento de ajuste) de tal forma que se garantice tanto su capacidad para describir el comportamiento de la muestra, como para predecir de manera robusta los cuantiles de alto periodo de retorno. De esta forma, se han realizado estudios a escala nacional con el objetivo de determinar el esquema de regionalización que ofrece mejores resultados para las características hidrológicas de las cuencas españolas, respecto a los caudales máximos anuales, teniendo en cuenta el numero de datos disponibles. La metodología utilizada parte de la identificación de regiones homogéneas, cuyos límites se han determinado teniendo en cuenta las características fisiográficas y climáticas de las cuencas, y la variabilidad de sus estadísticos, comprobando posteriormente su homogeneidad. A continuación, se ha seleccionado el modelo estadístico de caudales máximos anuales con un mejor comportamiento en las distintas zonas de la España peninsular, tanto para describir los datos de la muestra como para extrapolar a los periodos de retorno más altos. El proceso de selección se ha basado, entre otras cosas, en la generación sintética de series de datos mediante simulaciones de Monte Carlo, y el análisis estadístico del conjunto de resultados obtenido a partir del ajuste de funciones de distribución a estas series bajo distintas hipótesis. Posteriormente, se ha abordado el tema de la relación caudal-volumen y la definición de los hidrogramas de diseño en base a la misma, cuestión que puede ser de gran importancia en el caso de presas con grandes volúmenes de embalse. Sin embargo, los procedimientos de cálculo hidrológico aplicados habitualmente no tienen en cuenta la dependencia estadística entre ambas variables. En esta Tesis se ha desarrollado un procedimiento para caracterizar dicha dependencia estadística de una manera sencilla y robusta, representando la función de distribución conjunta del caudal punta y el volumen en base a la función de distribución marginal del caudal punta y la función de distribución condicionada del volumen respecto al caudal. Esta última se determina mediante una función de distribución log-normal, aplicando un procedimiento de ajuste regional. Se propone su aplicación práctica a través de un procedimiento de cálculo probabilístico basado en la generación estocástica de un número elevado de hidrogramas. La aplicación a la seguridad hidrológica de las presas de este procedimiento requiere interpretar correctamente el concepto de periodo de retorno aplicado a variables hidrológicas bivariadas. Para ello, se realiza una propuesta de interpretación de dicho concepto. El periodo de retorno se entiende como el inverso de la probabilidad de superar un determinado nivel de embalse. Al relacionar este periodo de retorno con las variables hidrológicas, el hidrograma de diseño de la presa deja de ser un único hidrograma para convertirse en una familia de hidrogramas que generan un mismo nivel máximo en el embalse, representados mediante una curva en el plano caudal volumen. Esta familia de hidrogramas de diseño depende de la propia presa a diseñar, variando las curvas caudal-volumen en función, por ejemplo, del volumen de embalse o la longitud del aliviadero. El procedimiento propuesto se ilustra mediante su aplicación a dos casos de estudio. Finalmente, se ha abordado el tema del cálculo de las avenidas estacionales, cuestión fundamental a la hora de establecer la explotación de la presa, y que puede serlo también para estudiar la seguridad hidrológica de presas existentes. Sin embargo, el cálculo de estas avenidas es complejo y no está del todo claro hoy en día, y los procedimientos de cálculo habitualmente utilizados pueden presentar ciertos problemas. El cálculo en base al método estadístico de series parciales, o de máximos sobre un umbral, puede ser una alternativa válida que permite resolver esos problemas en aquellos casos en que la generación de las avenidas en las distintas estaciones se deba a un mismo tipo de evento. Se ha realizado un estudio con objeto de verificar si es adecuada en España la hipótesis de homogeneidad estadística de los datos de caudal de avenida correspondientes a distintas estaciones del año. Asimismo, se han analizado los periodos estacionales para los que es más apropiado realizar el estudio, cuestión de gran relevancia para garantizar que los resultados sean correctos, y se ha desarrollado un procedimiento sencillo para determinar el umbral de selección de los datos de tal manera que se garantice su independencia, una de las principales dificultades en la aplicación práctica de la técnica de las series parciales. Por otra parte, la aplicación practica de las leyes de frecuencia estacionales requiere interpretar correctamente el concepto de periodo de retorno para el caso estacional. Se propone un criterio para determinar los periodos de retorno estacionales de forma coherente con el periodo de retorno anual y con una distribución adecuada de la probabilidad entre las distintas estaciones. Por último, se expone un procedimiento para el cálculo de los caudales estacionales, ilustrándolo mediante su aplicación a un caso de estudio. The compare and develop of a methodology in order to improve the extreme flow estimation for dam hydrologic security has been developed. First, the work has been focused on the adjustment of maximum peak flows distribution functions from which to extrapolate values for high return periods. This has become a major issue as the adoption of stricter standards on dam hydrologic security involves estimation of high design return periods which entails great uncertainty. Accordingly, it is important to incorporate all available techniques for the estimation of design peak flows in order to reduce this uncertainty. Selection of the statistical model (distribution function and adjustment method) is also important since its ability to describe the sample and to make solid predictions for high return periods quantiles must be guaranteed. In order to provide practical application of previous methodologies, studies have been developed on a national scale with the aim of determining a regionalization scheme which features best results in terms of annual maximum peak flows for hydrologic characteristics of Spanish basins taking into account the length of available data. Applied methodology starts with the delimitation of regions taking into account basin’s physiographic and climatic characteristics and the variability of their statistical properties, and continues with their homogeneity testing. Then, a statistical model for maximum annual peak flows is selected with the best behaviour for the different regions in peninsular Spain in terms of describing sample data and making solid predictions for high return periods. This selection has been based, among others, on synthetic data series generation using Monte Carlo simulations and statistical analysis of results from distribution functions adjustment following different hypothesis. Secondly, the work has been focused on the analysis of the relationship between peak flow and volume and how to define design flood hydrographs based on this relationship which can be highly important for large volume reservoirs. However, commonly used hydrologic procedures do not take statistical dependence between these variables into account. A simple and sound method for statistical dependence characterization has been developed by the representation of a joint distribution function of maximum peak flow and volume which is based on marginal distribution function of peak flow and conditional distribution function of volume for a given peak flow. The last one is determined by a regional adjustment procedure of a log-normal distribution function. Practical application is proposed by a probabilistic estimation procedure based on stochastic generation of a large number of hydrographs. The use of this procedure for dam hydrologic security requires a proper interpretation of the return period concept applied to bivariate hydrologic data. A standard is proposed in which it is understood as the inverse of the probability of exceeding a determined reservoir level. When relating return period and hydrological variables the only design flood hydrograph changes into a family of hydrographs which generate the same maximum reservoir level and that are represented by a curve in the peak flow-volume two-dimensional space. This family of design flood hydrographs depends on the dam characteristics as for example reservoir volume or spillway length. Two study cases illustrate the application of the developed methodology. Finally, the work has been focused on the calculation of seasonal floods which are essential when determining the reservoir operation and which can be also fundamental in terms of analysing the hydrologic security of existing reservoirs. However, seasonal flood calculation is complex and nowadays it is not totally clear. Calculation procedures commonly used may present certain problems. Statistical partial duration series, or peaks over threshold method, can be an alternative approach for their calculation that allow to solve problems encountered when the same type of event is responsible of floods in different seasons. A study has been developed to verify the hypothesis of statistical homogeneity of peak flows for different seasons in Spain. Appropriate seasonal periods have been analyzed which is highly relevant to guarantee correct results. In addition, a simple procedure has been defined to determine data selection threshold on a way that ensures its independency which is one of the main difficulties in practical application of partial series. Moreover, practical application of seasonal frequency laws requires a correct interpretation of the concept of seasonal return period. A standard is proposed in order to determine seasonal return periods coherently with the annual return period and with an adequate seasonal probability distribution. Finally a methodology is proposed to calculate seasonal peak flows. A study case illustrates the application of the proposed methodology.