794 resultados para Bivalve molluscs
Resumo:
Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2) (control ~400, mid ~650 and high ~950 µatm) and light (photosynthetically active radiation 35, 65 and 304 µmol photons/m**2/s). Elevated CO2 projected for the end of this century (~650 and ~950 µatm) reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation) in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.
Resumo:
The sudden appearance of calcified skeletons among many different invertebrate taxa at the Precambrian-Cambrian transition may have required minor reorganization of preexisting secretory functions. In particular, features of the skeletal organic matrix responsible for regulating crystal growth by inhibition may be derived from mucous epithelial excretions. The latter would have prevented spontaneous calcium carbonate overcrusting of soft tissues exposed to the highly supersaturated Late Proterozoic ocean [Knoll, A. H., Fairchild, I. J. & Swett, K. (1993) Palaios 8, 512-525], a putative function for which we propose the term "anticalcification." We tested this hypothesis by comparing the serological properties of skeletal water-soluble matrices and mucous excretions of three invertebrates--the scleractinian coral Galaxea fascicularis and the bivalve molluscs Mytilus edulis and Mercenaria mercenaria. Crossreactivities recorded between muci and skeletal water-soluble matrices suggest that these different secretory products have a high degree of homology. Furthermore, freshly extracted muci of Mytilus were found to inhibit calcium carbonate precipitation in solution.
Resumo:
Neste estudo, 26 amostras de ostras (Crassostrea gigas) comercializadas na cidade de São Paulo e em alguns pontos do litoral de São Paulo, e 36 amostras de mexilhões (Perna perna) colhidas mensalmente em 3 pontos do litoral de Ubatuba - SP, foram submetidas à pesquisa de vibrios potencialmente patogênicos. As amostras desses moluscos eram submetidas a enriquecimento em água peptonada alcalina sem cloreto de sódio e com 1 por cento de cloreto de sódio, e GSTB. O isolamento foi realizado em ágar TCBS. Colônias sacarose positivas e negativas, sugestivas de espécies de Vibrio foram identificadas presuntivamente em meio de ágar ferro de Kligler, sendo confirmadas através de provas bioqufmicas complementares. Uma parte das amostras de vibrios potencialmente patogênicos isoladas foi submetida ao teste de Dean e teste de alça ligada em íleo de coelhos. Os vibrios potencialmente patogênicos encontrados em amostras de ostras foram V. alginolyticus (81 por cento ), V.parahaemolyticus (77 por cento ), V. cholerae não 0:1 (31 por cento ), V. fluvialis (27 por cento ), V. furnissii (19 por cento ), V. mimicus (12 por cento ) e V. vulnificus (12 por cento ) e em amostras de mexilhões foram V. alginolyticus(97 por cento ), V. parahaemolyticus(75 por cento ), V. fluvialis (47 por cento ), V. vulnificus (11 por cento ), V. cholerae não 0:1 (6 por cento ), V. furnissii (6 por cento ) e V. mimicus (6 por cento ). Observou-se acúmulo de fluido em alça ligada de íleo de coelho entre 0,25 e 0,49 ml/cm em 6,9 por cento das amostras, entre 0,5 e 0,99 ml/cm em 15,6 por cento e maior ou igual a 1 ml/cm em 15,1 por cento , e/ou intestino de camundongos lactentes (Teste de Dean) em 26,6 por cento das amostras testadas, confirmando o elevado potencial desses microrganismos em causar gastrenterite. Verificou-se ausência de variação sazonal e também, de correlação entre os vibrios potencialmente patogênicos isolados e os indicadores de contaminação fecal, confirmando que a presença desses microrganismos ocorre de forma autóctone e que, as condições climáticas foram favoráveis à sobrevivência dessas espécies em todas as épocas do ano. Considerando-se os resultados obtidos no presente estudo e o fato de que ostras e mexilhões são habitualmente ingeridos crus ou insuficientemente cozidos, pode-se concluir que sua ingestão constitui-se em um determinado grau de risco para a saúde do consumidor.
Resumo:
Elevated temperatures associated with ocean warming and acidification can influence development and, ultimately, success of larval molluscs. The effect of projected oceanic changes on fertilisation and larval development in an Antarctic bivalve, Laternula elliptica, was investigated through successive larval stages at ambient temperature and pH conditions (-1.6°C and pH 7.98) and conditions representative of projections through to 2100 (-0.5°C to +0.4°C and pH 7.80 to pH 7.65). Where significant effects were detected, increased temperature had a consistently positive influence on larval development, regardless of pH level, while effects of reduced pH varied with larval stage and incubation temperature. Fertilisation was high and largely independent of stressors, with no loss of gamete viability. Mortality was unaffected at all development stages under experimental conditions. Elevated temperatures reduced occurrences of abnormalities in D-larvae and accelerated larval development through late veliger and D-larval stages, with D-larvae occurring 5 d sooner at 0.4°C compared to ambient temperature. Reduced pH did not affect occurrences of abnormalities in larvae, but it slowed the development of calcifying stages. More work is required to investigate the effects of developmental delays of the magnitude seen here in order to better determine the ecological relevance of these changes on longer term larval and juvenile success.
Resumo:
The Water Framework Directive (WFD) establishes Environmental Quality Standards (EQS) in marine water for 34 priority substances. Among these substances, 25 are hydrophobic and bioaccumulable (2 metals and 23 organic compounds). For these 25 substances, monitoring in water matrix is not appropriate and an alternative matrix should be developed. Bivalve mollusks, particularly mussels (Mytilus edulis, Mytilus galloprovincialis), are used by Ifremer as a quantitative biological indicator since 1979 in France, to assess the marine water quality. This study has been carried out in order to determine thresholds in mussels at least as protective as EQS in marine water laid down by the WFD. Three steps are defined: - Provide an overview of knowledges about the relations between the concentrations of contaminants in the marine water and mussels through bioaccumulation factor (BAF) and bioconcentration factor (BCF). This allows to examine how a BCF or a BAF can be determined: BCF can be determined experimentally (according to US EPA or ASTM standards), or by Quantitative Activity-Structure Relationship models (QSAR): four equations can be used for mussels. BAF can be determined by field experiment; but none standards exists. It could be determined by using QSAR but this method is considered as invalid for mussels, or by using existing model: Dynamic Budget Model, but this is complex to use. - Collect concentrations data in marine water (Cwater) in bibliography for those 25 substances; and compare them with concentration in mussels (Cmussels) obtained through French monitoring network of chemicals contaminants (ROCCH) and biological integrator network RINBIO. According to available data, this leads to determine the BAF or the BCF (Cmussels /Cwater) with field data. - Compare BAF and BCF values (when available) obtained with various methods for these substances: BCF (stemming from the bibliography, using experimental process), BCF calculated by QSAR and BAF determined using field data. This study points out that experimental BCF data are available for 3 substances (Chlorpyrifos, HCH, Pentachlorobenzene). BCF by QSAR can be calculated for 20 substances. The use of field data allows to evaluate 4 BAF for organic compounds and 2 BAF for metals. Using these BAF or BCF value, thresholds in shellfish can be determined as an alternative to EQS in marine water.