544 resultados para Biostatistics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The identification of useful quality indicators for nutrition therapy (QINTs) is of great interest and a challenge. This study attempted to identify the 10 QINTs that best suit the practice of quality control in nutrition therapy (NT) by evaluating the opinion of experts in NT with the use of psychometric techniques and statistical tools. Methods: Thirty-six QINTs available for clinical application in Brazil were assessed in 2 distinct phases. In phase 1, 26 nutrition experts ranked QINTs by scoring 4 attributes (utility, simplicity, objectivity, low cost) to assess each QINT on a 5-point Likert scale. The top 10 QINTs were identified from the 10 best scores obtained, and the reliability of expert opinion for each indicator was assessed by Cronbach's alpha. In phase 2, experts provided feedback regarding the selected top 10 QINTs by answering 2 closed questions. Results: The top 10 QINTs, in descending order, are the frequency of nutrition screening of hospitalized patients, diarrhea, involuntary withdrawal of enteral feeding tubes, feeding tube obstruction, fasting longer than 24 hours, glycemic dysfunction, estimated energy expenditure and protein needs, central venous catheter infection, compliance of NT indication, and frequency of application of subjective global assessment. Opinions were consistent among the interviewed experts. During feedback, 96% of experts were satisfied with the top 10 QINTs, and 100% had considered them in accordance with their previous opinion. Conclusion: The top 10 QINTs were identified according to their usefulness in clinical practice by obtaining adequate agreement and representativeness of opinion of nutrition experts. (Nutr Clin Pract. 2012;27:261-267)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The accurate evaluation of error of measurement (EM) is extremely important as in growth studies as in clinical research, since there are usually quantitatively small changes. In any study it is important to evaluate the EM to validate the results and, consequently, the conclusions. Because of its extreme simplicity, the Dahlberg formula is largely used worldwide, mainly in cephalometric studies. OBJECTIVES: (I) To elucidate the formula proposed by Dahlberg in 1940, evaluating it by comparison with linear regression analysis; (II) To propose a simple methodology to analyze the results, which provides statistical elements to assist researchers in obtaining a consistent evaluation of the EM. METHODS: We applied linear regression analysis, hypothesis tests on its parameters and a formula involving the standard deviation of error of measurement and the measured values. RESULTS AND CONCLUSION: we introduced an error coefficient, which is a proportion related to the scale of observed values. This provides new parameters to facilitate the evaluation of the impact of random errors in the research final results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AEGISS (Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics) project aims to use spatio-temporal statistical methods to identify anomalies in the space-time distribution of non-specific, gastrointestinal infections in the UK, using the Southampton area in southern England as a test-case. In this paper, we use the AEGISS project to illustrate how spatio-temporal point process methodology can be used in the development of a rapid-response, spatial surveillance system. Current surveillance of gastroenteric disease in the UK relies on general practitioners reporting cases of suspected food-poisoning through a statutory notification scheme, voluntary laboratory reports of the isolation of gastrointestinal pathogens and standard reports of general outbreaks of infectious intestinal disease by public health and environmental health authorities. However, most statutory notifications are made only after a laboratory reports the isolation of a gastrointestinal pathogen. As a result, detection is delayed and the ability to react to an emerging outbreak is reduced. For more detailed discussion, see Diggle et al. (2003). A new and potentially valuable source of data on the incidence of non-specific gastro-enteric infections in the UK is NHS Direct, a 24-hour phone-in clinical advice service. NHS Direct data are less likely than reports by general practitioners to suffer from spatially and temporally localized inconsistencies in reporting rates. Also, reporting delays by patients are likely to be reduced, as no appointments are needed. Against this, NHS Direct data sacrifice specificity. Each call to NHS Direct is classified only according to the general pattern of reported symptoms (Cooper et al, 2003). The current paper focuses on the use of spatio-temporal statistical analysis for early detection of unexplained variation in the spatio-temporal incidence of non-specific gastroenteric symptoms, as reported to NHS Direct. Section 2 describes our statistical formulation of this problem, the nature of the available data and our approach to predictive inference. Section 3 describes the stochastic model. Section 4 gives the results of fitting the model to NHS Direct data. Section 5 shows how the model is used for spatio-temporal prediction. The paper concludes with a short discussion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mendelian models can predict who carries an inherited deleterious mutation of known disease genes based on family history. For example, the BRCAPRO model is commonly used to identify families who carry mutations of BRCA1 and BRCA2, based on familial breast and ovarian cancers. These models incorporate the age of diagnosis of diseases in relatives and current age or age of death. We develop a rigorous foundation for handling multiple diseases with censoring. We prove that any disease unrelated to mutations can be excluded from the model, unless it is sufficiently common and dependent on a mutation-related disease time. Furthermore, if a family member has a disease with higher probability density among mutation carriers, but the model does not account for it, then the carrier probability is deflated. However, even if a family only has diseases the model accounts for, if the model excludes a mutation-related disease, then the carrier probability will be inflated. In light of these results, we extend BRCAPRO to account for surviving all non-breast/ovary cancers as a single outcome. The extension also enables BRCAPRO to extract more useful information from male relatives. Using 1500 familes from the Cancer Genetics Network, accounting for surviving other cancers improves BRCAPRO’s concordance index from 0.758 to 0.762 (p = 0.046), improves its positive predictive value from 35% to 39% (p < 10−6) without impacting its negative predictive value, and improves its overall calibration, although calibration slightly worsens for those with carrier probability < 10%. Copyright c 2000 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microarray technology is a powerful tool able to measure RNA expression for thousands of genes at once. Various studies have been published comparing competing platforms with mixed results: some find agreement, others do not. As the number of researchers starting to use microarrays and the number of crossplatform meta-analysis studies rapidly increase, appropriate platform assessments become more important. Here we present results from a comparison study that offers important improvements over those previously described in the literature. In particular, we notice that none of the previously published papers consider differences between labs. For this paper, a consortium of ten labs from the Washington DC/Baltimore (USA) area was formed to compare three heavily used platforms using identical RNA samples: Appropriate statistical analysis demonstrates that relatively large differences exist between labs using the same platform, but that the results from the best performing labs agree rather well. Supplemental material is available from http://www.biostat.jhsph.edu/~ririzarr/techcomp/