67 resultados para Biomimetics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work the interaction of the pesticide carbaryl with two groups of biomimetic ligands, peptides and MIPs was screened by multiple minima hypersurfaces (MMH) procedures, through the AM1 semiempirical method. Data related to the properties of the molecular association of the complex biomimetic ligand-pesticide were obtained and compared with another molecular modeling algorithm named Leapfrog, as included in the Sybyl software package, and experimental results from the literature, remarking good correlation between them. All important MMH program parameters (cells number, box size, conformers) were studied and optimized with the aim of getting the minimum computation time without losing the correlation with experimental data. The data demonstrated that MMH approach can be used as a fast biomimetic ligand screening tool for MIPs. In the case of peptides the computation time was not comparable with the molecular dynamics methods conventionally used for this approach. © 2011 Springer Science+Business Media B.V.
Resumo:
A biomimetic sensor based on a carbon paste electrode modified with the nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine complex was developed as a reliable alternative technique for the sensitive and selective analysis of the herbicide diuron in environmental media. The sensor was evaluated using cyclic voltammetry and amperometric techniques. The best amperometric responses were obtained at 750 mV vs. Ag/AgCl (KClsat), using 0.1 mol L-1 phosphate buffer solution at pH 8.0. Under these conditions, the sensor showed a linear response for diuron concentrations between 9.9 × 10-6 and 1.5 × 10-4 mol L -1, a sensitivity of 22817 (±261) μA L mol-1, and detection and quantification limits of 6.14 × 10-6 and 2 × 10-5 mol L-1, respectively. The presence of the nickel complex in the carbon paste improved selectivity, stability, and sensitivity (which increased 700%), compared to unmodified paste. The applicability of the sensor was demonstrated using enriched environmental samples (river water and soil). © 2012 Elsevier B.V. All rights reserved.
Resumo:
Material surfaces that provide biomimetic cues, such as nanoscale architectures, have been shown to alter cell/biomaterial interactions. Recent studies have identified titania nanotube arrays as strong candidates for use in interfaces on implantable devices due to their ability to elicit improved cellular functionality. However, limited information exists regarding the immune response of nanotube arrays. Thus, in this study, we have investigated the short- and long-term immune cell reaction of titania nanotube arrays. Whole blood lysate (containing leukocytes, thrombocytes and trace amounts of erythrocytes), isolated from human blood, were cultured on titania nanotube arrays and biomedical grade titanium (as a control) for 2 hours and 2 and 7 days. In order to determine the in vitro immune response on titania nanotube arrays, immune cell functionality was evaluated by cellular viability, adhesion, proliferation, morphology, cytokine/chemokine expression, with and without lipopolysaccharide (LPS), and nitric oxide release. The results presented in this study indicate a decrease in short- and long-term monocyte, macrophage and neutrophil functionality on titania nanotube arrays as compared to the control substrate. This work shows a reduced stimulation of the immune response on titania nanotube arrays, identifying this specific nanoarchitecture as a potentially optimal interface for implantable biomedical devices. © 2013 The Royal Society of Chemistry.
Resumo:
Exploitation of the electronic properties of carbon nanotubes for the development of voltammetric and amperometric sensors to monitor analytes of environmental relevance has increased in recent years. This work reports the development of a biomimetic sensor based on a carbon paste modified with 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride (a biomimetic catalyst of the P450 enzyme) and multi-wall carbon nanotubes (MWCNT), for the sensitive and selective detection of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-D). The sensor was evaluated using cyclic voltammetry and amperometry, for electrochemical characterization and quantification purposes, respectively. Amperometric analyses were carried out at -100 mV vs. Ag/AgCl(KClsat), using a 0.1 mol L-1 phosphate buffer solution at pH 6.0 as the support electrolyte. Under these optimized analytical conditions, the sensor showed a linear response between 9.9 × 10-6 and 1.4 × 10-4 mol L-1, a sensitivity of 1.8 × 104 (±429) μA L mol -1, and limits of detection and quantification of 2.1 × 10 -6 and 6.8 × 10-6 mol L-1, respectively. The incorporation of functionalized MWCNT in the carbon paste resulted in a 10-fold increase in the response, compared to that of the biomimetic sensor without MWCNT. In addition, the low applied potential (-100 mV) used to obtain high sensitivity also contributed to the excellent selectivity of the proposed sensor. The viability of the application of this sensor for analysis of soil samples was confirmed by satisfactory recovery values, with a mean of 96% and RSD of 2.1% (n = 3). © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Physics governs all working patterns of the universe and could not be otherwise in a biological environment. Living things depend directly on laws and physical models to compose their body structure, allow its survival in certain environments, communication between individuals and groups and also to establish a complex sensorial system that allows interaction with the environment that surrounds them. With the advancement of science and technology, new ideas are required, and thus, many researchers began to turn their attention to those systems found in nature, as these systems often present practical solutions and with maximum efficiency. This imitation of biological systems, applied in creating innovative technological resources, is called Biomimetics. To study the biological systems based on physical concepts is essential the creation of models. These allow the distinction of the effects of the issue really essential and may be ignored side effects that do not have an effective participation in the phenomenon being analyzed. In this Work Completion of course will be studied the phenomenon of countercurrent heat exchangers, present in various situations of nature, focusing on their participation in the legs of birds, also the balance of certain birds that are supported on one leg and possible inspiration of these phenomena in the fields of engineering. Also included are videos that allow better understanding of the studied subjects
Resumo:
There are considerations of that the education of Physics of the way as comes being driven us textbooks and consequently in classroom, is distant and distorted of their real purpose. We notice that the education of this science through the Physical school discipline, has I assume a character of preparation for university entrance exams exercises resolution, exceling for the memorization of formulae and by the mathematical solutions, fact that looks to cause to it is lacking of motivation and to the disinterest of the students regarding his contents. Since we are surrounded by phenomena, events, elements of the nature, new technologies, objects and so many others that can be explained and many times until applied and/or reproduced by means of physical concepts, there is no reason for treat to Physical as somewhat academic and remote of the reality. The little interest of high school students by the discipline of Physics and their poor performance in the learning of his contents has led to the search of new paths, resources and strategies that promote a more meaningful learning. Taking into account these facts, we seek in this course conclusion work, observe, analyze and apply concepts of the Physical one in multiple elements of ours routine, doing use of the interdisciplinary nature as a possible mechanism. The animals exert a fascination on most people. Much of what we see in their way of being and behaving can be explained by the laws of Physics and its models. Their physique, behavior and activities involve diverse movements, communication and sensing as physical limitations varied. Zoologists and physicists build models in an attempt to explain or understand animal behavior using well-established physical principles. The creation of physical models is going to approach a problem, identifies the fundamental information and removing all of the irrelevant details. An example... (Complete abstract click electrnic access below)
Resumo:
Aim: This case report describe a resin layering restorative technique based on biomimetic concept to improve esthetics in a patient with dental defects that affected both enamel and dentin in anterior teeth. Background: Severe structural defect in anterior teeth compromises esthetics and it is a high challenge to become the defect imperceptible after the restoration. Case description: A clinical sequence of applying different composite resin layers allowed the reproduction of the interaction between hard dental tissues and the restorative material. Conclusion: This technique achieved a satisfactory final esthetic outcome, preserving sound teeth structure and at same time, improved the quality of life of the young patient. Clinical significance: The utilization of the biomimetic concept to increase a disharmonic smile with dental defects is based in a conservative approach, which reached a satisfactory and esthetic outcome.
Resumo:
The expressive possibilities within the field of surface design come up with increasingly larger with the emergence of technologies that allow the construction of forms and structures of high complexity such as three-dimensional printing. Establishing a relationship between design and complex systems, this work seeks to address the significant interrelationship of new paradigms of science, designed from concepts such as chaos, complexity and self-organization along with the cyber and parametric design, assuming thus the consequent impact of these in the creation and construction of process surfaces. Starting from the investigation of the applicability of the aforementioned conceptual bases, will be exemplified prospects of surface, produced in the first instance through computer interfaces, assigning the emergence of new creative processes and technology. Furthermore, elucidating biomimetics and its importance in the design of the design as a means of inspiration in complex systems of nature.
Resumo:
A new concept for in vitro visual evaluation of sun protection factor (SPF) of cosmetic formulations based on a supramolecular ultraviolet (UV) dosimeter was clearly demonstrated. The method closely parallels the method validated for in vivo evaluation and relies on the determination of the slightest perceptible bleaching of an iron-complex dye/nanocrystallinetitanium dioxide interface (UV dosimeter) in combination with an artificial skin substrate simulating the actual human skin in the presence and absence of a cosmetic formulation. The successful evaluation of SPF was ensured by the similarity of the erythema response of our dosimeter and human skin to UV light irradiation. A good linear correlation of in vitro and in vivo data up to SPF 40 confirmed the effectiveness of such a simple, cheap, and fast method. In short, here we unravel a convenient and accessible visual FPS evaluation method that can help improving the control on cosmetic products contributing to the reduction of skin cancer, one of the critical public health issues nowadays. (C) 2011 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:726732, 2012
Resumo:
Reconstruction of bone is needed for high bone loss due to congenital deformities, trauma or neoplastic diseases. Commonly, orthopaedic surgical treatments are autologus or allogenic bone implant or prosthetic implant. A choice to the traditional approaches could be represented by tissue engineering that use cells (and/or their products) and innovative biomaterials to perform bone substitutes biologically active as an alternative to artificial devices. In the last years, there was a wide improvement in biology on stem cells potential research and in biomedical engineering through development of new biomaterials designed to resemble the physiological tissues. Tissue engineering strategies and smart materials aim together to stimulate in vivo bone regeneration. This approaches drive at restore not only structure integrity and/or function of the original tissue, but also to induce new tissue deposition in situ. An intelligent bone substitute is now designed like not only a scaffold but also as carrier of regeneration biomolecular signals. Biomimetics has helped to project new tissue engineered devices to simulate the physiological substrates architecture, such extracellular matrix (ECM), and molecular signals that drive the integration at the interface between pre-existing tissue and scaffold. Biomimetic strategies want to increase the material surface biological activity with physical modifications (topography) o chemical ones (adhesive peptides), to improve cell adhesion to material surface and possibly scaffold colonization. This study evaluated the effects of biomimetic modifications of surgical materials surface, as poly-caprolattone (PCL) and titanium on bone stem cells behaviour in a marrow experimental model in vitro. Two biomimetic strategies were analyzed; ione beam irradiation, that changes the surface roughness at the nanoscale, and surface functionalization with specific adhesive peptides or Self Assembled Monolayers (SAMs). These new concept could be a mean to improve the early (cell adhesion, spreading..) and late phases (osteoblast differentiation) of cell/substrate interactions.
Resumo:
Objects with complex shape and functions have always attracted attention and interest. The morphological diversity and complexity of naturally occurring forms and patterns have been a motivation for humans to copy and adopt ideas from Nature to achieve functional, aesthetic and social value. Biomimetics is addressed to the design and development of new synthetic materials using strategies adopted by living organisms to produce biological materials. In particular, biomineralized tissues are often sophisticate composite materials, in which the components and the interfaces between them have been defined and optimized, and that present unusual and optimal chemical-physical, morphological and mechanical properties. Moreover, biominerals are generally produced by easily traceable raw materials, in aqueous media and at room pressure and temperature, that is through cheap process and materials. Thus, it is not surprising that the idea to mimic those strategies proper of Nature has been employed in several areas of applied sciences, such as for the preparation of liquid crystals, ceramic thin films computer switches and many other advanced materials. On this basis, this PhD thesis is focused on the investigation of the interaction of biologically active ions and molecules with calcium phosphates with the aim to develop new materials for the substitution and repair of skeletal tissue, according to the following lines: I. Modified calcium phosphates. A relevant part of this PhD thesis has been addressed to study the interaction of Strontium with calcium phosphates. It was demonstrated that strontium ion can substitute for calcium into hydroxyapatite, causing appreciable structural and morphological modifications. The detailed structural analysis carried out on the nanocrystals at different strontium content provided new insight into its interaction with the structure of hydroxyapatite. At variance with the behaviour of Sr towards HA, it was found that this ion inhibits the synthesis of octacalcium phosphate. However, it can substitute for calcium in this structure up to 15 atom %, in agreement with the increase of the cell parameters observed on increasing ion concentration. A similar behaviour was found for Magnesium ion, whereas Manganese inhibits the synthesis of octacalcium phosphate and it promotes the precipitation of dicalcium phosphate dehydrate. It was also found that Strontium affects the kinetics of the reaction of hydrolysis of α-TCP. It inhibits the conversion from α-TCP to hydroxyapatite. However, the resulting apatitic phase contains significant amounts of Sr2+ suggesting that the addition of Sr2+ to the composition of α-TCP bone cements could be successfully exploited for its local delivery in bone defects. The hydrolysis of α-TCP has been investigated also in the presence of increasing amounts of gelatin: the results indicated that this biopolymer accelerates the hydrolysis reaction and promotes the conversion of α-TCP into OCP, suggesting that its addition in the composition of calcium phosphate cements can be employed to modulate the OCP/HA ratio, and as a consequence the solubility, of the set cement. II. Deposition of modified calcium phosphates on metallic substrates. Coating with a thin film of calcium phosphates is frequently applied on the surface of metallic implants in order to combine the high mechanical strength of the metal with the excellent bioactivity of the calcium phosphates surface layers. During this PhD thesis, thank to the collaboration with prof. I.N. Mihailescu, head of the Laser-Surface-Plasma Interactions Laboratory (National Institute for Lasers, Plasma and Radiation Physics – Laser Department, Bucharest) Pulsed Laser Deposition has been successfully applied to deposit thin films of Sr substituted HA on Titanium substrates. The synthesized coatings displayed a uniform Sr distribution, a granular surface and a good degree of crystallinity which slightly decreased on increasing Sr content. The results of in vitro tests carried out on osteoblast-like and osteoclast cells suggested that the presence of Sr in HA thin films can enhance the positive effect of HA coatings on osteointegration and bone regeneration, and prevent undesirable bone resorption. The possibility to introduce an active molecule in the implant site was explored using Matrix Assisted Pulsed Laser Evaporation to deposit hydroxyapatite nanocrystals at different content of alendronate, a bisphosphonate widely employed in the treatments of pathological diseases associated to bone loss. The coatings displayed a good degree of crystallinity, and the results of in vitro tests indicated that alendronate promotes proliferation and differentiation of osteoblasts even when incorporated into hydroxyapatite. III. Synthesis of drug carriers with a delayed release modulated by a calcium phosphate coating. A core-shell system for modulated drug delivery and release has been developed through optimization of the experimental conditions to cover gelatin microspheres with a uniform layer of calcium phosphate. The kinetics of the release from uncoated and coated microspheres was investigated using aspirin as a model drug. It was shown that the presence of the calcium phosphate shell delays the release of aspirin and allows to modulate its action.
Resumo:
In this thesis, anodic aluminum oxide (AAO) membranes, which provide well-aligned uniform mesoscopic pores with adjustable pore parameters, were fabricated and successfully utilized as templates for the fabrication of functional organic nanowires, nanorods and the respective well-ordered arrays. The template-assisted patterning technique was successfully applied for the realization of different objectives:rnHigh-density and well-ordered arrays of hole-conducting nanorods composed of cross-linked triphenylamine (TPA) and tetraphenylbenzidine (TPD) derivatives on conductive substrates like ITO/glass have been successfully fabricated. By applying a freeze-drying technique to remove the aqueous medium after the wet-chemical etching of the template, aggregation and collapsing of the rods was prevented and macroscopic areas of perfectly freestanding nanorods were feasible. Based on the hole-conducting nanorod arrays and their subsequent embedding into an electron-conducting polymer matrix via spin-coating, a novel routine concept for the fabrication of well-ordered all-organic bulk heterojunction for organic photovoltaic applications was successfully demonstrated. The increased donor/acceptor interface of the fabricated devices resulted in a remarkable increase of the photoluminescence quenching compared to a planar bilayer morphology. Further, the fundamental working principle of the templating approach for the solution-based all-organic photovoltaic device was demonstrated for the first time.rnFurthermore, in order to broaden the applicability of patterned surfaces, which are feasible via the template-based patterning of functional materials, AAO with hierarchically branched pores were fabricated and utilized as templates. By pursuing the common templating process hierarchically polymeric replicas, which show remarkable similarities with interesting biostructures, like the surface of the lotus leaf and the feet of a gecko, were successfully prepared.rnIn contrast to the direct infiltration of organic functional materials, a novel route for the fabrication of functional nanowires via post-modification of reactive nanowires was established. Therefore, reactive nanowires based on cross-linked pentafluorophenylesters were fabricated by utilizing AAO templates. The post-modification with fluorescent dyes was demonstrated. Furthermore, reactive wires were converted into well-dispersed poly(N-isopropylacrylamide) (PNIPAM) hydrogels, which exhibit a thermal-responsive reversible phase transition. The reversible thermal-responsible swelling of the PNIPAM nanowires exhibited a more than 50 % extended length than in the collapsed PNIPAM state. rnLast but not least, the shape-anisotropic pores of AAO were utilized to uniformly align the mesogens of a nematic liquid crystalline elastomer. Liquid crystalline nanowires with a narrow size distribution and uniform orientation of the liquid crystalline material were fabricated. It was shown that during the transition from the nematic to the isotropic phase the rod’s length shortened by roughly 40 percent. As such these liquid crystalline elastomeric nanowires may find application, as wire-shaped nanoactuators in various fields of research, like lab-on-chip systems, micro fluidics and biomimetics.rn
Resumo:
With over 43,000 species, spiders are the largest predacious arthropod group. They have developed key characteristics such as multi-purpose silk types, venoms consisting of hundreds of components, locomotion driven by muscles and hydraulic pressure, a highly evolved key-lock mechanism between the complex genital structures, and many more unique features. After 300 million years of evolutionary refinement, spiders are present in all land habitats and represent one of the most successful groups of terrestrial organisms. Ecophysiology combines functional and evolutionary aspects of morphology, physiology, biochemistry and molecular biology with ecology. Cutting-edge science in spiders focuses on the circulatory and respiratory system, locomotion and dispersal abilities, the immune system, endosymbionts and pathogens, chemical communication, gland secretions, venom components, silk structure, structure and perception of colours as well as nutritional requirements. Spiders are valuable indicator species in agroecosystems and for conservation biology. Modern transfer and application technologies research spiders and their products with respect to their value for biomimetics, material sciences, and the agrochemical and pharmaceutical industries.