978 resultados para Biomedical engineering|Medical imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung.

The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the electrical impedance tomography objectives is to estimate the electrical resistivity distribution in a domain based only on electrical potential measurements at its boundary generated by an imposed electrical current distribution into the boundary. One of the methods used in dynamic estimation is the Kalman filter. In biomedical applications, the random walk model is frequently used as evolution model and, under this conditions, poor tracking ability of the extended Kalman filter (EKF) is achieved. An analytically developed evolution model is not feasible at this moment. The paper investigates the identification of the evolution model in parallel to the EKF and updating the evolution model with certain periodicity. The evolution model transition matrix is identified using the history of the estimated resistivity distribution obtained by a sensitivity matrix based algorithm and a Newton-Raphson algorithm. To numerically identify the linear evolution model, the Ibrahim time-domain method is used. The investigation is performed by numerical simulations of a domain with time-varying resistivity and by experimental data collected from the boundary of a human chest during normal breathing. The obtained dynamic resistivity values lie within the expected values for the tissues of a human chest. The EKF results suggest that the tracking ability is significantly improved with this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 1999 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented for including path propagation effects into models of radiofrequency resonators for use in magnetic resonance imaging. The method is based on the use of Helmholtz retarded potentials and extends our previous work on current density models of resonators based on novel inverse finite Hilbert transform solutions to the requisite integral equations. Radiofrequency phase retardation effects are most pronounced at high field strengths (frequencies) as are static field perturbations due to the magnetic materials in the resonators themselves. Both of these effects are investigated and a novel resonator structure presented for use in magnetic resonance microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ionizing radiation in different compositions of polymer gel dosimeters are investigated using FT-Raman spectroscopy and NMR T-2 relaxation times. The dosimeters are manufactured from different concentrations of comonomers (acrylamide and N,N'-methylene-bis-acrylamide) dispersed in different concentrations of an aqueous gelatin matrix. Results are analysed using a model of fast exchange of magnetization between three proton pools. The fraction of protons in each pool is determined using the known chemical composition of the dosimeter and FT-Raman spectroscopy. Based on these results, the physical and chemical processes in interplay in the dosimeters are examined in view of their effect on the changes in T-2 The precipitation of growing macroradicals and the scavenging of free radicals by gelatin are used to explain the rate of polymerization. The model describes the changes in T-2 as a function of the absorbed dose up to 50 Gy for the different compositions. This is expected to aid the theoretical design of new, more efficient dosimeters, since it was demonstrated that the optimum dosimeter (i.e, with the lowest dose resolution) must have a range of relaxation times which match the range of T-2 values which can be determined with the lowest uncertainty using an MRI scanner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) spin-spin relaxation time (T-2) is related to the radiation-dependent concentration of polymer formed in polymer gel dosimeters manufactured from monomers in an aqueous gelatin matrix. Changes in T-2 with time post-irradiation have been reported in the literature but their nature is not fully understood. We investigated those changes with time after irradiation using FT-Raman spectroscopy and the precise determination of T-2 at high magnetic field in a polymer gel dosimeter, A model of fast exchange of magnetization taking into account ongoing gelation and strengthening of the gelatin matrix as well as the polymerization of the monomers with time is presented. Published data on the changes of T-2 in gelatin gels as a function of post-manufacture time are used and fitted closely by the model presented. The same set of parameters characterizing the variations of T-2 in gelatin gels and the increasing concentration of polymer determined from Fr-Raman spectroscopy are used successfully in the modelling of irradiated polymer gel dosimeters. Minimal variations in T-2 in an irradiated PAG dosimeter are observed after 13 h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method for the evaluation of radiotherapy 3D polymer gel dosimeters has been developed using ultrasound to assess the significant structural changes that occur following irradiation of the dosimeters. The ultrasonic parameters of acoustic speed of propagation, attenuation and transmitted signal intensity were measured as a function of absorbed radiation dose. The dose sensitivities for each parameter were determined as 1.8 x 10(-4) s m(-1) Gy(-1), 3.9 dB m(-1) Gy(-1) and 3.2 V-1 Gy(-1) respectively. All parameters displayed a strong variation with absorbed dose that continued beyond absorbed doses of 15 Gy. The ultrasonic measurements demonstrated a significantly larger dynamic range in dose response curves than that achieved with previously published magnetic resonance imaging (MRI) dose response data. It is concluded that ultrasound shows great potential as a technique for the evaluation of polymer gel dosimeters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of open-access elliptical cross-section magnet systems has recently come under consideration. Obtaining values for the forces generated within these unusual magnets is important to progress the designs towards feasible instruments. This paper presents a novel and flexible method for the rapid computation of forces within elliptical magnets. The method is demonstrated by the analysis of a clinical magnetic resonance imaging magnet of elliptical cross-section and open design. The analysis reveals the non-symmetric nature of the generated Maxwell forces, which are an important consideration, particularly in the design of superconducting systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is presented for the systematic design of asymmetric zonal shim coils for magnetic resonance applications. Fourier-series methods are used to represent the magnetic field inside and outside a circular cylinder of length 2L and radius a. The current density on the cylinder is also represented using Fourier series. Any desired field can be specified in advance on the cylinder's radius, over some nonsymmetric portion pL

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lateral ventricular volumes based on segmented brain MR images can be significantly underestimated if partial volume effects are not considered. This is because a group of voxels in the neighborhood of lateral ventricles is often mis-classified as gray matter voxels due to partial volume effects. This group of voxels is actually a mixture of ventricular cerebro-spinal fluid and the white matter and therefore, a portion of it should be included as part of the lateral ventricular structure. In this note, we describe an automated method for the measurement of lateral ventricular volumes on segmented brain MR images. Image segmentation was carried in combination of intensity correction and thresholding. The method is featured with a procedure for addressing mis-classified voxels in the surrounding of lateral ventricles. A detailed analysis showed that lateral ventricular volumes could be underestimated by 10 to 30% depending upon the size of the lateral ventricular structure, if mis-classified voxels were not included. Validation of the method was done through comparison with the averaged manually traced volumes. Finally, the merit of the method is demonstrated in the evaluation of the rate of lateral ventricular enlargement. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ellipsoidal harmonics are presented as a basis function set for the design of shim coils for magnetic resonance imaging (MRI) or spectroscopy. MR shim coils may be either superconductive or resistive. Ellipsoidal harmonics form an orthogonal set over an ellipsoid and hence are appropriate in circumstances where the imaging or spectroscopic region of a magnet more closely conforms to an ellipsoid rather than a sphere. This is often the case in practice. The Cartesian form of ellipsoidal harmonics is discussed. A method for the design of streamline coil designs is detailed and patterns for third-order ellipsoidal (Lame) shims wound on a cylindrical surface are presented.