882 resultados para Biomedical Applications X
Resumo:
In this work, a method for the functionalization of biocompatible, poly(lactic acid)-based nanoparticles with charged moieties or fluorescent labels is presented. Therefore, a miniemulsion solvent evaporation procedure is used in which prepolymerized poly(L-lactic acid) is used together with a previously synthesized copolymer of methacrylic acid or a polymerizable dye, respectively, and an oligo(lactic acid) macromonomer. Alternatively, the copolymerization has been carried out in one step with the miniemulsion solvent evaporation. The increased stability in salty solutions of the carboxyl-modified nanoparticles compared to nanoparticles consisting of poly(lactic acid) only has been shown in light scattering experiments. The properties of the nanoparticles that were prepared with the separately synthesized copolymer were almost identical to those in which the copolymerization and particle fabrication were carried out simultaneously. During the characterization of the fluorescently labeled nanoparticles, the focus was on the stable bonding between the fluorescent dye and the rest of the polymer chain to ensure that none of it is released from the particles, even after longer storage time or during lengthy experiments. In a fluorescence correlation spectroscopy experiment, it could be shown that even after two weeks, no dye has been released into the solvent. Besides biomedical research for which the above described, functionalized nanoparticles were optimized, nanoparticles also play a role in coating technology. One possibility to fabricate coatings is the electrophoretic deposition of particles. In this process, the mobility of nanoparticles near electrode interfaces plays a crucial role. In this thesis, the nanoparticle mobility has been investigated with resonance enhanced dynamic light scattering (REDLS). A new setup has been developed in which the evanescent electromagnetic eld of a surface plasmon that propagates along the gold-sample interface has been used as incident beam for the dynamic light scattering experiment. The gold layer that is necessary for the excitation of the plasmon doubles as an electrode. Due to the penetration depth of the surface plasmon into the sample layer that is limited to ca. 200 nm, insights on the voltage- and frequency dependent mobility of the nanoparticles near the electrode could be gained. Additionally, simultaneous measurements at four different scattering angles can be carried out with this setup, therefore the investigation of samples undergoing changes is feasible. The results were discussed in context with the mechanisms of electrophoretic deposition.
Resumo:
Polymer implants are interesting alternatives to the contemporary load-bearing implants made from metals. Polyetheretherketone (PEEK), a well-established biomaterial for example, is not only iso-elastic to bone but also permits investigating the surrounding soft tissues using magnetic resonance imaging or computed tomography, which is particularly important for cancer patients. The commercially available PEEK bone implants, however, require costly coatings, which restricts their usage. As an alternative to coatings, plasma activation can be applied. The present paper shows the plasma-induced preparation of nanostructures on polymer films and on injection-molded micro-cantilever arrays and the associated chemical modifications of the surface. In vitro cell experiments indicate the suitability of the activation process. In addition, we show that microstructures such as micro-grooves 1 μm deep and 20 μm wide cause cell alignment. The combination of micro-injection molding, simultaneous microstructuring using inserts/bioreplica and plasma treatments permits the preparation of polymer implants with nature-analogue, anisotropic micro- and nanostructures.
Resumo:
Para las decisiones urgentes sobre intervenciones quirúrgicas en el sistema cardiovascular se necesitan simulaciones computacionales con resultados fiables y que consuman un tiempo de cálculo razonable. Durante años los investigadores han trabajado en diversos métodos numéricos de cálculo que resulten atractivos para los cirujanos. Estos métodos, precisos pero costosos desde el punto de vista del coste computacional, crean un desajuste entre la oferta de los ingenieros que realizan las simulaciones y los médicos que operan en el quirófano. Por otra parte, los métodos de cálculo más simplificados reducen el tiempo de cálculo pero pueden proporcionar resultados no realistas. El objetivo de esta tesis es combinar los conceptos de autorregulación e impedancia del sistema circulatorio, la interacción flujo sanguíneo-pared arterial y modelos geométricos idealizados tridimensionales de las arterias pero sin pérdida de realismo, con objeto de proponer una metodología de simulación que proporcione resultados correctos y completos, con tiempos de cálculo moderados. En las simulaciones numéricas, las condiciones de contorno basadas en historias de presión presentan inconvenientes por ser difícil conocerlas con detalle, y porque los resultados son muy sensibles ante pequeñas variaciones de dichas historias. La metodología propuesta se basa en los conceptos de autorregulación, para imponer la demanda de flujo aguas abajo del modelo en el ciclo cardiaco, y la impedancia, para representar el efecto que ejerce el flujo en el resto del sistema circulatorio sobre las arterias modeladas. De este modo las historias de presión en el contorno son resultados del cálculo, que se obtienen de manera iterativa. El método propuesto se aplica en una geometría idealizada del arco aórtico sin patologías y en otra geometría correspondiente a una disección Stanford de tipo A, considerando la interacción del flujo pulsátil con las paredes arteriales. El efecto de los tejidos circundantes también se incorpora en los modelos. También se hacen aplicaciones considerando la interacción en una geometría especifica de un paciente anciano que proviene de una tomografía computarizada. Finalmente se analiza una disección Stanford tipo B con tres modelos que incluyen la fenestración del saco. Clinicians demand fast and reliable numerical results of cardiovascular biomechanic simulations for their urgent pre-surgery decissions. Researchers during many years have work on different numerical methods in order to attract the clinicians' confidence to their colorful contours. Though precise but expensive and time-consuming methodologies create a gap between numerical biomechanics and hospital personnel. On the other hand, simulation simplifications with the aim of reduction in computational time may cause in production of unrealistic outcomes. The main objective of the current investigation is to combine ideas such as autoregulation, impedance, fluid-solid interaction and idealized geometries in order to propose a computationally cheap methodology without excessive or unrealistic simplifications. The pressure boundary conditions are critical and polemic in numerical simulations of cardiovascular system, in which a specific arterial site is of interest and the rest of the netwrok is neglected but represented by a boundary condition. The proposed methodology is a pressure boundary condition which takes advantage of numerical simplicity of application of an imposed pressure boundary condition on outlets, while it includes more sophisticated concepts such as autoregulation and impedance to gain more realistic results. Incorporation of autoregulation and impedance converts the pressure boundary conditions to an active and dynamic boundary conditions, receiving feedback from the results during the numerical calculations and comparing them with the physiological requirements. On the other hand, the impedance boundary condition defines the shapes of the pressure history curves applied at outlets. The applications of the proposed method are seen on idealized geometry of the healthy arotic arch as well as idealized Stanford type A dissection, considering the interaction of the arterial walls with the pulsatile blood flow. The effect of surrounding tissues is incorporated and studied in the models. The simulations continue with FSI analysis of a patient-specific CT scanned geometry of an old individual. Finally, inspiring of the statistic results of mortality rates in Stanford type B dissection, three models of fenestrated dissection sac is studied and discussed. Applying the developed boundary condition, an alternative hypothesis is proposed by the author with respect to the decrease in mortality rates in patients with fenestrations.
Resumo:
With an increasing use of emerging patterning technologies such as UV-NIL in biotechnological applications there is at the same time a raising demand for new material for such applications. Here we present a PEG based precursor mixed with a photoinitiator to make it UV sensitive as a new material aimed at biotechnological applications. Using HSQ patterned quartz stamps we observed excellent pattern replication indicating good flow properties of the resist. We were able to obtain imprints with <20 nm residual layer. The PEG based resist has hydrogel properties and it swelling in water was observed by AFM.
Resumo:
We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded-index perfluorinated polymer optical fiber. © 2014 SPIE.
Resumo:
Artificial tactile sensing systems using the distributive tactile sensing technique and fibre Bragg grating sensors are presented. A one-dimensional arrangement, with possible applications in an endoscope, is compared with a similar arrangement using conventional electronic sensors. A two-dimensional sensing surface is described, with potential applications in human balance and gait analysis, capable of detecting simultaneously the position and shape of an object placed upon it. It is believed that this work represents the first use of fibre Bragg grating sensors in a distributive sensing regime.
Resumo:
This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.