938 resultados para Biological samples
Resumo:
In inflammatory diseases, release of oxidants leads to oxidative damage to proteins. The precise nature of oxidative damage to individual proteins depends on the oxidant involved. Chlorination and nitration are markers of modification by the myeloperoxidase-H2O2-Cl- system and nitric oxide-derived oxidants, respectively. Although these modifications can be detected by western blotting, currently no reliable method exists to identify the specific sites damage to individual proteins in complex mixtures such as clinical samples. We are developing novel LCMS2 and precursor ion scanning methods to address this. LC-MS2 allows separation of peptides and detection of mass changes in oxidized residues on fragmentation of the peptides. We have identified indicative fragment ions for chlorotyrosine, nitrotyrosine, hydroxytyrosine and hydroxytryptophan. A nano-LC/MS3 method involving the dissociation of immonium ions to give specific fragments for the oxidized residues has been developed to overcome the problem of false positives from ions isobaric to these immonium ions that exist in unmodified peptides. The approach has proved able to identify precise protein modifications in individual proteins and mixtures of proteins. An alternative methodology involves multiple reaction monitoring for precursors and fragment ions are specific to oxidized and chlorinated proteins, and this has been tested with human serum albumin. Our ultimate aim is to apply this methodology to the detection of oxidative post-translational modifications in clinical samples for disease diagnosis, monitoring the outcomes of therapy, and improved understanding of disease biochemistry.
Resumo:
Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS3 ions from oxidised residues. Here, we tested this approach for other oxidations, and compared it with an alternative approach involving the use of extracted ion chromatograms (XICs) generated from high-resolution MSMS data using very narrow mass windows. This accurate mass XIC data methodology was effective at identifying nitrotyrosine, chlorotyrosine, and oxidative deamination of lysine, and for tyrosine oxidations highlighted more modified peptide species than precursor ion scanning or statistical database searches. Although some false positive peaks still occurred in the XICs, these could be identified by comparative assessment of the peak intensities. The method has the advantage that a number of different modifications can be analysed simultaneously in a single LC-MSMS run. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. Biological significance: The use of accurate mass extracted product ion chromatograms to detect oxidised peptides could improve the identification of oxidatively damaged proteins in inflammatory conditions. © 2013 Elsevier B.V.
Resumo:
Soft ionization methods for the introduction of labile biomolecules into a mass spectrometer are of fundamental importance to biomolecular analysis. Previously, electrospray ionization (ESI) and matrix assisted laser desorption-ionization (MALDI) have been the main ionization methods used. Surface acoustic wave nebulization (SAWN) is a new technique that has been demonstrated to deposit less energy into ions upon ion formation and transfer for detection than other methods for sample introduction into a mass spectrometer (MS). Here we report the optimization and use of SAWN as a nebulization technique for the introduction of samples from a low flow of liquid, and the interfacing of SAWN with liquid chromatographic separation (LC) for the analysis of a protein digest. This demonstrates that SAWN can be a viable, low-energy alternative to ESI for the LC-MS analysis of proteomic samples.
Resumo:
The general method for determining organomercurials in environmental and biological samples is gas chromatography with electron capture detection (GC-ECD). However, tedious sample work up protocols and poor chromatographic response show the need for the development of new methods. Here, Atomic Fluorescence-based methods are described, free from these deficiencies. The organomercurials in soil, sediment and tissue samples are first released from the matrices with acidic KBr and cupric ions and extracted into dichloromethane. The initial extracts are subjected to thiosulfate clean up and the organomercury species are isolated as their chloride derivatives by cupric chloride and subsequent extraction into a small volume of dichloromethane. In water samples the organomercurials are pre-concentrated using a sulfhydryl cotton fiber adsorbent, followed by elution with acidic KBr and CuSO 4 and extraction into dichloromethane. Analysis of the organomercurials is accomplished by capillary column chromatography with atomic fluorescence detection.
Resumo:
The thesis primarily reports the synthesis, characterization and application of novel mixed mode stationary phases for Hydrophilic Interaction Liquid Chromatography (HILIC). HILIC is a rapidly emerging chromatographic mode that is finding great applicability in the analysis of polar organic molecules. In addition, there is a chapter on the analysis of Bisphenol A and related species using capillary electrophoresis (CE) coupled with boron-doped diamond electrodes for electrochemical detection. The synthesis and characterization of the novel mixed mode stationary phases prepared in this work is an important contribution to the field as the materials prepared exhibited better performance than similar materials obtained commercially. In addition a more thorough characterization of the materials (e.g.,thermogravimetric analysis, various NMR modes, elemental analysis, etc.) and resulting columns (e.g., H) than is typically encountered. The application of these new materials to the analysis of sugars using evaporative light scattering is also novel. In CE studies, electrochemical detection is sufficiently rare that the work is also novel.
Resumo:
Quantification of pyridoxal-5´-phosphate (PLP) in biological samples is challenging due to the presence of endogenous PLP in matrices used for preparation of calibrators and quality control samples (QCs). Hence, we have developed an LC-MS/MS method for accurate and precise measurement of the concentrations of PLP in samples (20 µL) of human whole blood that addresses this issue by using a surrogate matrix and minimizing the matrix effect. We used a surrogate matrix comprising 2% bovine serum albumin (BSA) in phosphate buffer saline (PBS) for making calibrators, QCs and the concentrations were adjusted to include the endogenous PLP concentrations in the surrogate matrix according to the method of standard addition. PLP was separated from the other components of the sample matrix using protein precipitation with trichloroacetic acid 10% w/v. After centrifugation, supernatant were injected directly into the LC-MS/MS system. Calibration curves were linear and recovery was > 92%. QCs were accurate, precise, stable for four freeze-thaw cycles, and following storage at room temperature for 17h or at -80 °C for 3 months. There was no significant matrix effect using 9 different individual human blood samples. Our novel LC-MS/MS method has satisfied all of the criteria specified in the 2012 EMEA guideline on bioanalytical method validation.
Resumo:
Motivation: Many biomedical experiments are carried out by pooling individual biological samples. However, pooling samples can potentially hide biological variance and give false confidence concerning the data significance. In the context of microarray experiments for detecting differentially expressed genes, recent publications have addressed the problem of the efficiency of sample pooling, and some approximate formulas were provided for the power and sample size calculations. It is desirable to have exact formulas for these calculations and have the approximate results checked against the exact ones. We show that the difference between the approximate and the exact results can be large.
Resumo:
The water activity (a(w)) of microbial substrates, biological samples, and foods and drinks is usually determined by direct measurement of the equilibrium relative humidity above a sample. However, these materials can contain ethanol, which disrupts the operation of humidity sensors. Previously, an indirect and problematic technique based on freezing-point depression measurements was needed to calculate the a(w) when ethanol was present. We now describe a rapid and accurate method to determine the a(w) of ethanol-containing samples at ambient temperatures. Disruption of sensor measurements was minimized by using a newly developed, alcohol-resistant humidity sensor fitted with an alcohol filter. Linear equations were derived from a(w) measurements of standard ethanol-water mixtures, and from Norrish's equation, to correct sensor measurements. To our knowledge, this is the first time that electronic sensors have been used to determine the a(w) of ethanol- containing samples.
Resumo:
Quantile normalization (QN) is a technique for microarray data processing and is the default normalization method in the Robust Multi-array Average (RMA) procedure, which was primarily designed for analysing gene expression data from Affymetrix arrays. Given the abundance of Affymetrix microarrays and the popularity of the RMA method, it is crucially important that the normalization procedure is applied appropriately. In this study we carried out simulation experiments and also analysed real microarray data to investigate the suitability of RMA when it is applied to dataset with different groups of biological samples. From our experiments, we showed that RMA with QN does not preserve the biological signal included in each group, but rather it would mix the signals between the groups. We also showed that the Median Polish method in the summarization step of RMA has similar mixing effect. RMA is one of the most widely used methods in microarray data processing and has been applied to a vast volume of data in biomedical research. The problematic behaviour of this method suggests that previous studies employing RMA could have been misadvised or adversely affected. Therefore we think it is crucially important that the research community recognizes the issue and starts to address it. The two core elements of the RMA method, quantile normalization and Median Polish, both have the undesirable effects of mixing biological signals between different sample groups, which can be detrimental to drawing valid biological conclusions and to any subsequent analyses. Based on the evidence presented here and that in the literature, we recommend exercising caution when using RMA as a method of processing microarray gene expression data, particularly in situations where there are likely to be unknown subgroups of samples.