967 resultados para Biodegradation of aromatic hydrocarbons
Resumo:
A novel series of linear, high molecular weight polymers were synthesized by one-pot, superacid-catalyzed reaction of acenaphthenequinone (1) with aromatic hydrocarbons. The reactions were performed at room temperature in the Bronsted superacid CF3SO3H (trifluoromethanesulfonic acid, TFSA) and in a mixture of TFSA with methanesulfonic acid (MSA) and trifluoroacetic acid (TFA), which was used as both solvent and a medium for generation of electrophilic species from acenaphthenequinone. The polymer-forming reaction was found to be dependent greatly on the acidity of the reaction medium, as judged from the viscosity of the polymers obtained. Polycondensations of acenaphthenequinone with 4,4'-diphenoxybenzophenone (f), 1,3-bis(4-phenoxybenzoyl)benzene (g), 1,4-bis(4-phenoxybenzoyl)benzene (h), 1,10-bis(4-phenoxyphenyl)decane-1,10-dione (i), 2,6-diphenoxybenzonitrile), 2,6-diphenoxybenzoic acid (k), and 2-(4-biphenylyl)-6-phenylbenzoxazole (1) proceeded in a reaction medium of wide range of acidity, including pure TFSA (Hammett acidity function H-0 of pure TFSA is -14.1), whereas condensation of 1 with biphenyl, terphenyl, diphenyl ether, and 1,4-diphenoxybenzene needed a reaction medium of acidity H-0 less than -11.5. A possible reaction mechanism is suggested. The polymers obtained were found to be soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. H-1 and C-13 NMR analyses of the polymers synthesized revealed their linear, highly regular structure. The polymers also possess high thermostability. Char yields for polymers 3a, 3c, 3d, and 3l in nitrogen were close to 80% at 1000 degrees C.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) were monitored over 56 days in calcareous contaminated-soil amended with either or both biochar and Eisenia fetida. Biochar reduced total (449 to 306mgkg(-1)) and bioavailable (cyclodextrin extractable) (276 to 182mgkg(-1)) PAHs, PAH concentrations in E. fetida (up to 45%) but also earthworm weight. Earthworms increased PAH bioavailability by >40%. Combined treatment results were similar to the biochar-only treatment. Earthworms increased water soluble Co (3.4 to 29.2mgkg(-1)), Cu (60.0 to 120.1mgkg(-1)) and Ni (31.7 to 83.0mgkg(-1)) but not As, Cd, Pb or Zn; biochar reduced water soluble Cu (60 to 37mgkg(-1)). Combined treatment results were similar to the biochar-only treatment but gave a greater reduction in As and Cd mobility. Biochar has contaminated land remediation potential, but its long-term impact on contaminants and soil biota needs to be assessed.
Resumo:
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The burning of organic residues and wastes in furnaces of cement industries has been an attractive and lucrative approach to eliminate stocks of these pollutants. There is a potential risk for producing PAH in the workplace of industries burning organic wastes, so that highly sensitive analytical methods are needed for monitoring the air quality of these environments. An official method for determination of PAH is based on liquid chromatography with fluorescence detection at fixed excitation and emission wavelengths. We demonstrate that a suitable choice of these wavelengths, which are changed during the chromatographic run, significantly improves the detectability of PAH in atmosphere and particulate matter collected in cement industries.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
More than 130 organic substances in dichloromethane-methanol (4: 1) extracts of particulate matter and the gaseous phase from wood burning for the production of charcoal have been identified by capillary gas chromatography coupled with low-resolution mass spectrometry (GC-MS), use of GC retention indices, and comparison with authentic standards. Many of the substances identified are methoxyphenols (derivatives of syringol and guaiacol), polycyclic aromatic hydrocarbons (PAH), oxidized PAH (oxy-PAH), and levoglucosan, the last being a monosoccharide derivative from the thermal breakdown of cellulose. The amount of unsubstituted PAH was greater than that of methyl- and dimethyl-substituted homologs.
Resumo:
Fourteen samples of particulate matter and semi-volatile organic compounds were collected during 6 months in the city of Campo Grande, South Mato Grosso State, Brazil. Particle-bound polycyclic aromatic hydrocarbons (PAHs) were collected on Fluoropore PTFE filters and gas-phase PAHs were collected into sorbent tubes with XAD-2 resin. Both types of samples were extracted with a dichloromethane/methanol mixture (4:1 v/v), then the extracts were subjected to gas chromatography-mass spectrometry (GC-MS) analysis. PAHs, oxidized PAH (oxy-PAHs), phenols and methoxyphenols were identified by use of GC retention indices and MS files. The average value obtained for the sum of 15 PAHs was 21.05 ng m(-3) (range: 8.94-62.5 ng m(-3)). The presence of specific tracers and calculations of characteristic ratios (e.g. [Phe]/[Phe] + [Ant]) were used to identify the sources of the emissions of PAHs in the atmospheric samples. Levoglucosan (the anhydride of beta-glucose), retene (1-methyl-7-isopropylphenanthrene) and methoxyphenols (derivatives of syringol and guaiacol) and tracers for wood burning were identified. This study demonstrates that biomass burning from the rural zone is the main source of PAHs and emissions of other substances in the investigated site of Campo Grande. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fly soot samples collected in the sugar cane fields after the process of burning were extracted in a Soxhlet apparatus (methylene chloride:methanol 4:1). The extracts were fractionated on silica gel Sep-Pak cartridges into three fractions. A gas chromatographic-mass spectrometric study of the fly soot extracts allowed the identification of the PAH with mutagenic and carcinogenic properties. Large amounts of aliphatic hydrocarbons, fatty acid esters and some PAHs were identified by GCMS in full scan mode. GC-MS in the selective ion monitoring mode (SIM) was suitable for the determination of many PAHs, which are often present in the burnt biomass. 31 PAHs and 7 thiophens derivatives were identified. The presence of these compounds should be regarded as a caution to workers and the general population to avoid exposure to the fly soot.
Resumo:
Sugar cane burning in Brazil causes remarkable amounts of organic compounds to be emitted amongst which the polycyclic aromatic hydrocarbons (PAHs) represent serious health hazards. Therefore, 24-h aerosol samples (< 10 mum aerodynamic diameter) were collected in Araraquara city (São Paulo state) during the harvest season using a Hi-Vol sampler. PAHs were recovered using an Accelerated Solvent Extractor and analyzed by low-pressure gas chromatography-ion trap mass spectrometry (LP-GC-IT-MS). The fully automated extraction process was performed in less than 25 min with a solvent consumption of approximately 20 ml. The use of a deactivated 0.6 m x 0. 10 mm i.d. restrictor coupled to a 10 m wide-bore analytical column allowed most of the 16 PAHs in EPA's priority list to be identified and quantified in only 13 min. Concentrations of PAHs in Nraraquara aerosols ranged between 0.5 and 8.6 ng m(-3). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) and non-aromatic hydrocarbons (NAHs), including n-alkanes, isoprenoids and petroleum biomarkers (terpanes, hopanes, steranes and diasteranes), were quantified by gas chromatography with flame ionization and mass spectrometer detectors in sediment samples collected from the Sao Sebastiao Channel (SSC), Brazil, where the largest Brazilian maritime petroleum terminal is located The concentrations of total PAHs. total n-alkanes and petroleum biomarkers ranged from below the detection limits to 370 ng g(-1,) 28 mu g g(-1), 2200 ng g(-1) (dry weight), respectively. The analysis of PAN distribution suggested combustion sources of PAHs as the main input for these compounds with smaller amount from petroleum contamination The distribution of petroleum biomarkers undoubtedly demonstrated petroleum as a source of anthropogenic contamination throughout the region. The assessment of petrogenic sources of contamination in marine sediment is more challenging if only PAH analysis were carried out, which demonstrates that more stable hydrocarbons such as petroleum biomarkers are useful for investigating potential presence of petroleum (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the first results of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in sediment cores of Admiralty Bay, Antarctica. These markers were used to assess the local input of anthropogenic materials (particulate and organic compounds) as a result of the influence of human occupation in a sub-Antarctic region and a possible long-range atmospheric transport of combustion products from sources in South America. The highest SCPs and PAHs concentrations were observed during the last 30 years, when three research stations were built in the area and industrial activities in South America increased. The concentrations of SCPs and PAHs were much lower than those of other regions in the northern hemisphere and other reported data for the southern hemisphere. The PAH isomer ratios showed that the major sources of PAHs are fossil fuels/petroleum, biomass combustion and sewage contribution generally close to the Brazilian scientific station. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Antarctic Brazilian Program (PROANTAR)
Resumo:
This study extends the current knowledge regarding the use of plants for the passive accumulation of anthropogenic PAHs that are present in the atmospheric total suspended particles (TSP) in the tropics and sub-tropics. It is of major relevance because the anthropic emissions of TSP containing PAHs are significant in these regions, but their monitoring is still scarce. We compared the biomonitor efficiency of Lolium multiflorum 'Lema' and tropical tree species (Tibouchina pukka and Psidium guajava 'Paluma') that were growing in an intensely TSP-polluted site in Cubatao (SE Brazil), and established the species with the highest potential for alternative monitoring of PAHs. PAHs present in the TSP indicated that the region is impacted by various emission sources. L. multiflorum showed a greater efficiency for the accumulation of PAH compounds on their leaves than the tropical trees. The linear regression between the logBCF and logKoa revealed that L. multiflorum is an efficient biomonitor of the profile of light and heavy PAHs present in the particulate phase of the atmosphere during dry weather and mild temperatures. The grass should be used only for indicating the PAHs with higher molecular weight in warmer and wetter periods. (C) 2012 Elsevier Inc. All rights reserved.