773 resultados para Big Data Analytics
Resumo:
One of the main challenges in data analytics is that discovering structures and patterns in complex datasets is a computer-intensive task. Recent advances in high-performance computing provide part of the solution. Multicore systems are now more affordable and more accessible. In this paper, we investigate how this can be used to develop more advanced methods for data analytics. We focus on two specific areas: model-driven analysis and data mining using optimisation techniques.
Resumo:
This chapter discusses the methodological aspects and empirical findings of a large-scale, funded project investigating public communication through social media in Australia. The project concentrates on Twitter, but we approach it as representative of broader current trends toward the integration of large datasets and computational methods into media and communication studies in general, and social media scholarship in particular. The research discussed in this chapter aims to empirically describe networks of affiliation and interest in the Australian Twittersphere, while reflecting on the methodological implications and imperatives of ‘big data’ in the humanities. Using custom network crawling technology, we have conducted a snowball crawl of Twitter accounts operated by Australian users to identify more than one million users and their follower/followee relationships, and have mapped their interconnections. In itself, the map provides an overview of the major clusters of densely interlinked users, largely centred on shared topics of interest (from politics through arts to sport) and/or sociodemographic factors (geographic origins, age groups). Our map of the Twittersphere is the first of its kind for the Australian part of the global Twitter network, and also provides a first independent and scholarly estimation of the size of the total Australian Twitter population. In combination with our investigation of participation patterns in specific thematic hashtags, the map also enables us to examine which areas of the underlying follower/followee network are activated in the discussion of specific current topics – allowing new insights into the extent to which particular topics and issues are of interest to specialised niches or to the Australian public more broadly. Specifically, we examine the Twittersphere footprint of dedicated political discussion, under the #auspol hashtag, and compare it with the heightened, broader interest in Australian politics during election campaigns, using #ausvotes; we explore the different patterns of Twitter activity across the map for major television events (the popular competitive cooking show #masterchef, the British #royalwedding, and the annual #stateoforigin Rugby League sporting contest); and we investigate the circulation of links to the articles published by a number of major Australian news organisations across the network. Such analysis, which combines the ‘big data’-informed map and a close reading of individual communicative phenomena, makes it possible to trace the dynamic formation and dissolution of issue publics against the backdrop of longer-term network connections, and the circulation of information across these follower/followee links. Such research sheds light on the communicative dynamics of Twitter as a space for mediated social interaction. Our work demonstrates the possibilities inherent in the current ‘computational turn’ (Berry, 2010) in the digital humanities, as well as adding to the development and critical examination of methodologies for dealing with ‘big data’ (boyd and Crawford, 2011). Out tools and methods for doing Twitter research, released under Creative Commons licences through our project Website, provide the basis for replicable and verifiable digital humanities research on the processes of public communication which take place through this important new social network.
Resumo:
The lack of adequate disease surveillance systems in Ebola-affected areas has both reduced the ability to respond locally and has increased global risk. There is a need to improve disease surveillance in vulnerable regions, and digital surveillance could present a viable approach.
Resumo:
Introduction A pedagogical relationship - the relationship produced through teaching and learning - is, according to phenomenologist Max van Maanen, ‘the most profound relationship an adult can have with a child’ (van Maanen 1982). But what does it mean for a teacher to have a ‘profound’ relationship with a student in digital times? What, indeed, is an optimal pedagogical relationship at a time when the exponential proliferation and transformation of information across the globe is making for unprecedented social and cultural change? Does it involve both parties in a Facebook friendship? Being snappy with Snapchat? Tumbling around on Tumblr? There is now ample evidence of a growing trend to displace face-to-face interaction by virtual connections. One effect of these technologically mediated relationships is that a growing number of young people experience relationships as ‘mile-wide, inch-deep’ phenomena. It is timely, in this context, to explore how pedagogical relationships are being transmuted by Big Data, and to ask about the implications this has for current and future generations of professional educators.
Resumo:
Huge amount of data are generated from a variety of information sources in healthcare while the data sources originate from a veracity of clinical information systems and corporate data warehouses. The data derived from the above data sources are used for analysis and trending purposes thus playing an influential role as a real time decision-making tool. The unstructured, narrative data provided by these data sources qualify as healthcare big-data and researchers argue that the application of big-data in healthcare might enable the accountability and efficiency.
Resumo:
Big Datasets are endemic, but they are often notoriously difficult to analyse because of their size, heterogeneity, history and quality. The purpose of this paper is to open a discourse on the use of modern experimental design methods to analyse Big Data in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has wide generality and advantageous inferential and computational properties. In particular, the principled experimental design approach is shown to provide a flexible framework for analysis that, for certain classes of objectives and utility functions, delivers near equivalent answers compared with analyses of the full dataset under a controlled error rate. It can also provide a formalised method for iterative parameter estimation, model checking, identification of data gaps and evaluation of data quality. Finally, it has the potential to add value to other Big Data sampling algorithms, in particular divide-and-conquer strategies, by determining efficient sub-samples.
Resumo:
Network topology and routing are two important factors in determining the communication costs of big data applications at large scale. As for a given Cluster, Cloud, or Grid system, the network topology is fixed and static or dynamic routing protocols are preinstalled to direct the network traffic. Users cannot change them once the system is deployed. Hence, it is hard for application developers to identify the optimal network topology and routing algorithm for their applications with distinct communication patterns. In this study, we design a CCG virtual system (CCGVS), which first uses container-based virtualization to allow users to create a farm of lightweight virtual machines on a single host. Then, it uses software-defined networking (SDN) technique to control the network traffic among these virtual machines. Users can change the network topology and control the network traffic programmingly, thereby enabling application developers to evaluate their applications on the same system with different network topologies and routing algorithms. The preliminary experimental results through both synthetic big data programs and NPB benchmarks have shown that CCGVS can represent application performance variations caused by network topology and routing algorithm.
Resumo:
Making Sense of Mass Education provides an engaging and accessible analysis of traditional issues associated with mass education. The book challenges preconceptions about social class, gender and ethnicity discrimination; highlights the interplay between technology, media, popular culture and schooling; and inspects the relevance of ethics and philosophy in the modern classroom. This new edition has been comprehensively updated to provide current information regarding literature, statistics and legal policies, and significantly expands on the previous edition's structure of derailing traditional myths about education as a point of discussion. It also features two new chapters on Big Data and Globalisation and what they mean for the Australian classroom. Written for students, practising teachers and academics alike, Making Sense of Mass Education summarises the current educational landscape in Australia and looks at fundamental issues in society as they relate to education.
Resumo:
Objective Vast amounts of injury narratives are collected daily and are available electronically in real time and have great potential for use in injury surveillance and evaluation. Machine learning algorithms have been developed to assist in identifying cases and classifying mechanisms leading to injury in a much timelier manner than is possible when relying on manual coding of narratives. The aim of this paper is to describe the background, growth, value, challenges and future directions of machine learning as applied to injury surveillance. Methods This paper reviews key aspects of machine learning using injury narratives, providing a case study to demonstrate an application to an established human-machine learning approach. Results The range of applications and utility of narrative text has increased greatly with advancements in computing techniques over time. Practical and feasible methods exist for semi-automatic classification of injury narratives which are accurate, efficient and meaningful. The human-machine learning approach described in the case study achieved high sensitivity and positive predictive value and reduced the need for human coding to less than one-third of cases in one large occupational injury database. Conclusion The last 20 years have seen a dramatic change in the potential for technological advancements in injury surveillance. Machine learning of ‘big injury narrative data’ opens up many possibilities for expanded sources of data which can provide more comprehensive, ongoing and timely surveillance to inform future injury prevention policy and practice.
Resumo:
This paper presents a cautious argument for re-thinking both the nature and the centrality of the one-to-one teacher/student relationship in contemporary pedagogy. A case is made that learning in and for our times requires us to broaden our understanding of pedagogical relations beyond the singularity of the teacher/student binary and to promote the connected teacher as better placed to lead learning for these times. The argument proceeds in three parts: first, a characterization of our times as defined increasingly by the digital knowledge explosion of Big Data; second, a re-thinking of the nature of pedagogical relationships in the context of Big Data; and third, an account of the ways in which leaders can support their teachers to become more effective in leading learning by being more closely connected to their professional colleagues.
Using Big Data to manage safety-related risk in the upstream oil and gas industry: A research agenda
Resumo:
Despite considerable effort and a broad range of new approaches to safety management over the years, the upstream oil & gas industry has been frustrated by the sector’s stubbornly high rate of injuries and fatalities. This short communication points out, however, that the industry may be in a position to make considerable progress by applying “Big Data” analytical tools to the large volumes of safety-related data that have been collected by these organizations. Toward making this case, we examine existing safety-related information management practices in the upstream oil & gas industry, and specifically note that data in this sector often tends to be highly customized, difficult to analyze using conventional quantitative tools, and frequently ignored. We then contend that the application of new Big Data kinds of analytical techniques could potentially reveal patterns and trends that have been hidden or unknown thus far, and argue that these tools could help the upstream oil & gas sector to improve its injury and fatality statistics. Finally, we offer a research agenda toward accelerating the rate at which Big Data and new analytical capabilities could play a material role in helping the industry to improve its health and safety performance.
Resumo:
We present Random Partition Kernels, a new class of kernels derived by demonstrating a natural connection between random partitions of objects and kernels between those objects. We show how the construction can be used to create kernels from methods that would not normally be viewed as random partitions, such as Random Forest. To demonstrate the potential of this method, we propose two new kernels, the Random Forest Kernel and the Fast Cluster Kernel, and show that these kernels consistently outperform standard kernels on problems involving real-world datasets. Finally, we show how the form of these kernels lend themselves to a natural approximation that is appropriate for certain big data problems, allowing $O(N)$ inference in methods such as Gaussian Processes, Support Vector Machines and Kernel PCA.