928 resultados para Bidirectional power flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new algorithm for optimal power flow problem. The algorithm is based on Newton's method which it works with an Augmented Lagrangian function associated with the original problem. The function aggregates all the equality and inequality constraints and is solved using the modified-Newton method. The test results have shown the effectiveness of the approach using the IEEE 30 and 638 bus systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutral wire in most power flow software is usually merged into phase wires using Kron's reduction. Since the neutral wire and the ground are not explicitly represented, neutral wire and ground currents and voltages remain unknown. In some applications, like power quality and safety analyses, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of special interest. In this paper, a general power flow algorithm for three-phase four-wire radial distribution networks, considering neutral grounding, based on backward-forward technique, is proposed. In this novel use of the technique, both the neutral wire and ground are explicitly represented. A problem of three-phase distribution system with earth return, as a special case of a four-wire network, is also elucidated. Results obtained from several case studies using medium- and low-voltage test feeders with unbalanced load, are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, it is presented a methodology for three-phase distribution transformer modeling, considering several types of transformer configuration, to be used in algorithms of power flow in three-phase radial distribution networks. The paper provides a detailed discussion about the models and the results from an implementation of the power flow algorithm. The results, taken from three different networks, are presented for several transformer configurations and for voltage regulators as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies two methods of mathematical decomposition to carry out an optimal reactive power flow (ORPF) in a coordinated decentralized way in the context of an interconnected multi-area power system. The first method is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). The second method uses a decomposition technique based on the Karush-Kuhn-Tucker (KKT) first-order optimality conditions. The viability of each method to be used in the decomposition of multi-area ORPF is studied and the corresponding mathematical models are presented. The IEEE RTS-96, the IEEE 118-bus test systems and a 9-bus didactic system are used in order to show the operation and effectiveness of the decomposition methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to solving the Optimal Power Flow problem is described, making use of some recent findings, especially in the area of primal-dual methods for complex programming. In this approach, equality constraints are handled by Newton's method inequality constraints for voltage and transformer taps by the logarithmic barrier method and the other inequality constraints by the augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. © 2001 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter presents an approach for a geometrical solution of an optimal power flow (OPF) problem for a two-bus system (slack and PV busses). The algebraic equations for the calculation of the Lagrange multipliers and for the minimum losses value are obtained. These equations are used to validate the results obtained using an OPF program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is presented a new approach for optimal power flow problem. This approach is based on the modified barrier function and the primal-dual logarithmic barrier method. A Lagrangian function is associated with the modified problem. The first-order necessary conditions for optimality are fulfilled by Newton's method, and by updating the barrier terms. The effectiveness of the proposed approach has been examined by solving the Brazilian 53-bus, IEEE118-bus and IEEE162-bus systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-phase three-wire power flow algorithms, as any tool for power systems analysis, require reliable impedances and models in order to obtain accurate results. Kron's reduction procedure, which embeds neutral wire influence into phase wires, has shown good results when three-phase three-wire power flow algorithms based on current summation method were used. However, Kron's reduction can harm reliabilities of some algorithms whose iterative processes need loss calculation (power summation method). In this work, three three-phase three-wire power flow algorithms based on power summation method, will be compared with a three-phase four-wire approach based on backward-forward technique and current summation. Two four-wire unbalanced medium-voltage distribution networks will be analyzed and results will be presented and discussed. © 2004 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach to the resolution of the Optimal Power Flow problem. In this approach the inequality constraints are treated by the Modified Barrier and Primal-Dual Logarithmic Barrier methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables, which are perturbed by the barrier parameter. A Lagrangian function is associated with the modified problem. The first-order necessary conditions are applied to the Lagrangian, generating a nonlinear system which is solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. Numerical tests on the Brazilian CESP and South-Southeast systems and a comparative test indicated that the new approach efficiently resolves of the Optimal Power Flow problem. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method for the decentralized solution of the optimal reactive power flow (ORPF) problem in interconnected power systems. The ORPF model is solved in a decentralized framework, consisting of regions, where the transmission system operator in each area operates its system independently of the other areas, obtaining an optimal coordinated but decentralized solution. The proposed scheme is based on an augmented Lagrangian approach using the auxiliary problem principle (APP). An implementation of an interior point method is described to solve the decoupled problem in each area. The described method is successfully implemented and tested using the IEEE two area RTS 96 test system. Numerical results comparing the solutions obtained by the traditional and the proposed decentralized methods are presented for validation. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a framework based on the decomposition of the first-order optimality conditions is described and applied to solve the Probabilistic Power Flow (PPF) problem in a coordinated but decentralized way in the context of multi-area power systems. The purpose of the decomposition framework is to solve the problem through a process of solving smaller subproblems, associated with each area of the power system, iteratively. This strategy allows the probabilistic analysis of the variables of interest, in a particular area, without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. An efficient method for probabilistic analysis, considering uncertainty in n system loads, is applied. The proposal is to use a particular case of the point estimate method, known as Two-Point Estimate Method (TPM), rather than the traditional approach based on Monte Carlo simulation. The main feature of the TPM is that it only requires resolve 2n power flows for to obtain the behavior of any random variable. An iterative coordination algorithm between areas is also presented. This algorithm solves the Multi-Area PPF problem in a decentralized way, ensures the independent operation of each area and integrates the decomposition framework and the TPM appropriately. The IEEE RTS-96 system is used in order to show the operation and effectiveness of the proposed approach and the Monte Carlo simulations are used to validation of the results. © 2011 IEEE.