934 resultados para Bi-directional coupling
Resumo:
Grid connected photovoltaic (PV) inverters fall into three broad categories - central, string and module integrated converters (MICs). MICs offer many advantages in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author - cascaded dc-dc MICs and bypass dc-dc MICs - integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150 W 5 A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows zero voltage switching (ZVS) keeps losses under 1 W for bi-directional power flows up to 15 W between two adjacent 12 V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.
Resumo:
Prostate cancer is the most commonly diagnosed malignancy and the second leading cause of cancer related deaths in Australian men. Treatment in the early stages of the disease involves surgery, radiation and/or hormone therapy. However, in late stages of the disease these treatments are no longer effective and only palliative care is available. Therefore, there is a focus on exploration of novel therapies to increase survival and treatment efficacy. Advanced prostate cancer is characterised by bone or other distant metastasis. Spreading of the primary tumour to a secondary location is a complex process requiring an initial loss in cell-cell adhesion followed by increased cell migration and invasion. One gene family that has been known to affect cell-to-cell contact in other model systems are the Eph receptor tyrosine kinases. They are the largest family of receptor tyrosine kinases made up of 14 vertebrate Eph receptors that bind to nine cell membrane bound ephrin ligands. Eph-ephrin interaction is crucial in regulating cell behaviour in developmental processes and it is now thought that the underlying mechanisms involved in development may also be involved in cancer. Aberrant expression has been reported in many human malignancies including prostate cancer. Furthermore, expression has been linked with metastasis and poor prognosis in other tumour models. This study explores the potential role of the Eph receptor family in prostate cancer, in particular the roles of EphA2, EphA3 and ephrin-A5. Gene expression profiles were established for the Eph family in a series of prostate cancer cell lines using quantitative real time RT-PCR. A smaller subset of the most prominently expressed genes was chosen to screen a cohort of clinical samples. Elevated levels of EphA2, EphA3 and their ligands, ephrin-A1 and ephrin-A5 were observed in individual cell lines. Interestingly high EphA3 expression was observed in the androgen responsive cell lines while EphA2 was more prominent in the androgen independent cell lines. However, studies using 5-dihydrotestosterone suggest that EphA3 expression in not regulated by androgen. Cells expressing EphA2 showed a greater ability for migration and invasion while cells expressing EphA3 showed poor migration and invasion. Forced expression of EphA2 in the LNCaP cell line resulted in a more invasive phenotype while forced expression of EphA3 in the PC-3 cell line suggests a possible negative effect for EphA3 on cell migration and invasion. Cell signalling studies show activation of EphA2 decreases activity of proteins thought to be involved in pathways regulating cell movement including Akt, Src and FAK. Changes to the activation status of Rho family members, including RhoA and Rac1, associated with reorganisation of the actin cytoskeleton, an important part of cell migration was also observed. As a result, activation of EphA2 in PC-3 cells resulted in a less invasive phenotype. A novel finding in this study was the discovery of a combination of two EphA2 Mabs able to activate EphA2. Preliminary results show a potential for this antibody combination to reduce prostate cancer invasion in vitro. A unique aspect of Eph-ephrin interaction is the resulting bi-directional signalling that occurs through both the receptor and ligand. In this study a potential role for ephrin-A5 mediated signalling in prostate cancer was observed. LNCaP cells express high levels of EphA3 and its high affinity ligand ephrin-A5. In stripe assays, used to study guidance cues, LNCaP cells show strong attraction/migration to EphA3-Fc stripes but not ephrin-A5-Fc stripes suggesting ephrin-A5 mediated reverse cell signalling is involved. Knockdown of ephrin-A5 using shRNA resulted in a decrease in attraction/migration to EphA3-Fc stripes. Furthermore a reduction in proliferation was also observed in vitro. A subcutaneous xenograft model using ephrin-A5 shRNA cells versus controls showed a decrease in tumour formation. This study demonstrates a difference in EphA2 and EphA3 function in prostate cancer migration/invasion and a potential role for ephrin-A5 in prostate cancer cell adhesion and growth.
Resumo:
Food neophobia is a highly heritable trait characterized by the rejection of foods that are novel or unknown and potentially limits dietary variety, with lower intake and preference particularly for fruits and vegetables. Understanding non-genetic (environmental) factors that may influence the expression of food neophobia is essential to improving children’s consumption of fruits and vegetables and encouraging the adoption of healthier diets. The aim of this study was to examine whether maternal infant feeding beliefs (at four months) were associated with the expression of food neophobia in toddlers and whether controlling feeding practices mediated this relationship. Participants were 244 first-time mothers (M = 30.4, SD = 5.1 years) allocated to the control group of the NOURISH randomized controlled trial. The relationships between infant feeding beliefs (Infant Feeding Questionnaire) at four months and controlling child feeding practices (Child Feeding Questionnaire) and food neophobia (Child Food Neophobia Scale) at 24 months were tested using correlational and multiple linear regression models (adjusted for significant covariates). Higher maternal Concern about infant under-eating and becoming underweight at four months was associated with higher child food neophobia at two years. Similarly, lower Awareness of infant hunger and satiety cues was associated with higher child food neophobia. Both associations were significantly mediated by mothers’ use of Pressure to eat. Intervening early to promote positive feeding practices to mothers may help reduce the use of controlling practices as children develop. Further research that can further elucidate the bi-directional nature of the mother-child feeding relationship is still required.
Resumo:
Dual-active bridges (DABs) can be used to deliver isolated and bidirectional power to electric vehicles (EVs) or to the grid in vehicle-to-grid (V2G) applications. However, such a system essentially requires a two-stage power conversion process, which significantly increases the power losses. Furthermore, the poor power factor associated with DAB converters further reduces the efficiency of such systems. This paper proposes a novel matrix converter based resonant DAB converter that requires only a single-stage power conversion process to facilitate isolated bi-directional power transfer between EVs and the grid. The proposed converter comprises a matrix converter based front end linked with an EV side full-bridge converter through a high frequency isolation transformer and a tuned LCL network. A mathematical model, which predicts the behavior of the proposed system, is presented to show that both the magnitude and direction of the power flow can be controlled through either relative phase angle or magnitude modulation of voltages produced by converters. Viability of the proposed concept is verified through simulations. The proposed matrix converter based DAB, with a single power conversion stage, is low in cost, and suites charging and discharging in single or multiple EVs or V2G applications.
Resumo:
Air transport is a critical link to regional, rural and remote communities in Australia. Air services provide important economic and social benefits but very little research has been done on assessing the value of regional aviation. This research provides the first empirical evidence that there is short and long run causality between regional aviation and economic growth. The authors analysed 88 regional airports in Australia over a period of 1985–86 to 2010–11 to determine the catalytic impacts of regional air transport on regional economic growth. The analysis was conducted using annual data related to total airport passenger movements – for the level of airport activity, and real aggregate taxable income – to represent economic growth. A significant bi-directional relationship was established: airports have an impact on regional economic growth and the economy directly impacts regional air transport. The economic significance of regional air transport confirms the importance of the airport as infrastructure for regional councils and the need for them to maintain and develop local airports. Funding should be targeted at airports directly to support regional development.
Resumo:
Strengths-based approaches draw upon frameworks and perspectives from social work and psychology but have not necessarily been consistently defined or well articulated across disciplines. Internationally, there are increasing calls for professionals in early years settings to work in strengths-based ways to support the access and participation of all children and families, especially those with complex needs. The purpose of this paper is to examine a potential promise of innovative uses of strengths-based approaches in early years practice and research in Australia, and to consider implications for application in other national contexts. In this paper, we present three cases (summarised from larger studies) depicting different applications of the Strengths Approach, under pinned by collaborative inquiry at the interface between practice and research. Analysis revealed three key themes across the cases: (i) enactment of strengths-based principles, (ii) the bi-directional and transformational influences of the Strengths Approach (research into practice/practice into research), and (iii) heightened practitioner and researcher awareness of, and responsiveness to, the operation of power. The findings highlight synergies and challenges to constructing and actualising strengths-based approaches in early years childhood research and practice. The case studies demonstrate that although constructions of what constitutes strengths-based research and practice requires ongoing critical engagement, redefining, and operationalising, using strengths-based approaches in early years settings can be generative and worthwhile.
Resumo:
Adaptation to climate change has become an important policy question in recent years. Agriculture is an economic activity that is most sensitive to climate change. We evaluate the dynamic effects of productivity change and individual efforts to adapt to climate change. Adaptation actions in agriculture are evaluated to determine how the climate affects production efficiency. In this paper, we use the bi-directional distance function method to measure Japanese rice production loss due to climate. We find that (1) accumulated precipitation has the greatest effect on rice production efficiency and (2) the climate effect on rice production efficiency decreases over time. Our results empirically support the benefit of the adaptation approach.
Resumo:
Loneliness is a distressing, complex, universal phenomena. This chapter focuses on loneliness in children and adolescents, specifically examining research on the relationship between young people’s social anxiety and loneliness and the role of bullying victimisation and loneliness. It answers the question does social anxiety and bullying victimization create loneliness in young people. It was found from a review of the literature that all three concepts are distinct yet inextricably intertwined as antecedents and consequences of each other. The constructs are bi-directional, often forming a feedback loop or negative cycle. In addition these variables can also be mediating and moderating variables. Implications for interventions are discussed.
Resumo:
The periodontal ligament is the key tissue facilitating periodontal regeneration. This study aimed to fabricate decellularized human periodontal ligament cell sheets for subsequent periodontal tissue engineering applications. The decellularization protocol involved the transfer of intact human periodontal ligament cell sheets onto melt electrospun polycaprolactone membranes and subsequent bi-directional perfusion with NH4OH/Triton X-100 and DNase solutions. The protocol was shown to remove 92% of DNA content. The structural integrity of the decellularized cell sheets was confirmed by a collagen quantification assay, immunostaining of human collagen type I and fibronectin, and scanning electron microscopy. ELISA was used to demonstrate the presence of residual basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and hepatocyte growth factor (HGF) in the decellularized cell sheet constructs. The decellularized cell sheets were shown to have the ability to support recellularization by allogenic human periodontal ligament cells. This study describes the fabrication of decellularized periodontal ligament cell sheets that retain an intact extracellular matrix and resident growth factors and can support repopulation by allogenic cells. The decellularized hPDL cell sheet concept has the potential to be utilized in future "off-the-shelf" periodontal tissue engineering strategies.
Resumo:
This study reports on an original concept of additive manufacturing for the fabrication of tissue engineered constructs (TEC), offering the possibility of concomitantly manufacturing a customized scaffold and a bioreactor chamber to any size and shape. As a proof of concept towards the development of anatomically relevant TECs, this concept was utilized for the design and fabrication of a highly porous sheep tibia scaffold around which a bioreactor chamber of similar shape was simultaneously built. The morphology of the bioreactor/scaffold device was investigated by micro-computed tomography and scanning electron microscopy confirming the porous architecture of the sheep tibiae as opposed to the non-porous nature of the bioreactor chamber. Additionally, this study demonstrates that both the shape, as well as the inner architecture of the device can significantly impact the perfusion of fluid within the scaffold architecture. Indeed, fluid flow modelling revealed that this was of significant importance for controlling the nutrition flow pattern within the scaffold and the bioreactor chamber, avoiding the formation of stagnant flow regions detrimental for in vitro tissue development. The bioreactor/scaffold device was dynamically seeded with human primary osteoblasts and cultured under bi-directional perfusion for two and six weeks. Primary human osteoblasts were observed homogenously distributed throughout the scaffold, and were viable for the six week culture period. This work demonstrates a novel application for additive manufacturing in the development of scaffolds and bioreactors. Given the intrinsic flexibility of the additive manufacturing technology platform developed, more complex culture systems can be fabricated which would contribute to the advances in customized and patient-specific tissue engineering strategies for a wide range of applications.
Resumo:
The relatively high incidence of Merkel cell carcinoma (MCC) in Queensland provides a valuable opportunity to examine links with other cancers. A retrospective cohort study was performed using data from the Queensland Cancer Registry. Standardized incidence ratios (SIRs) were used to approximate the relative risk of being diagnosed with another primary cancer either following or prior to MCC. Patients with an eligible first primary MCC (n=787) had more than double the expected number of subsequent primary cancers (SIR=2.19, 95% confidence interval (CI)=1.84–2.60; P<0.001). Conversely, people who were initially diagnosed with cancers other than MCC were about two and a half times more likely to have a subsequent primary MCC (n=244) compared with the general population (SIR=2.69, 95% CI=2.36–3.05; P<0.001). Significantly increased bi-directional relative risks were found for melanoma, lip cancer, head and neck cancer, lung cancer, myelodysplastic diseases, and cancer with unknown primary site. In addition, risks were elevated for female breast cancer and kidney cancer following a first primary MCC, and for subsequent MCCs following first primary colorectal cancer, prostate cancer, non-Hodgkin lymphoma, or lymphoid leukemia. These results suggest that several shared pathways are likely for MCC and other cancers, including immunosuppression, UV radiation, and genetics.
Resumo:
There is limited understanding about how insect movement patterns are influenced by landscape features, and how landscapes can be managed to suppress pest phytophage populations in crops. Theory suggests that the relative timing of pest and natural enemy arrival in crops may influence pest suppression. However, there is a lack of data to substantiate this claim. We investigate the movement patterns of insects from native vegetation (NV) and discuss the implications of these patterns for pest control services. Using bi-directional interception traps we quantified the number of insects crossing an NV/crop ecotone relative to a control crop/crop interface in two agricultural regions early in the growing season. We used these data to infer patterns of movement and net flux. At the community-level, insect movement patterns were influenced by ecotone in two out of three years by region combinations. At the functional-group level, pests and parasitoids showed similar movement patterns from NV very soon after crop emergence. However, movement across the control interface increased towards the end of the early-season sampling period. Predators consistently moved more often from NV into crops than vice versa, even after crop emergence. Not all species showed a significant response to ecotone, however when a response was detected, these species showed similar patterns between the two regions. Our results highlight the importance of NV for the recruitment of natural enemies for early season crop immigration that may be potentially important for pest suppression. However, NV was also associated with crop immigration by some pest species. Hence, NV offers both opportunities and risks for pest management. The development of targeted NV management may reduce the risk of crop immigration by pests, but not of natural enemies.
Resumo:
In this paper we examine the effect of technology on economic growth in Zimbabwe over the period 1975–2014 whilst accounting for structural breaks. We use the extended Cobb–Douglas type Solow (Q J Econ 70(1):65–94, 1956) framework and the ARDL bounds procedure to examine cointegration and short run and long run effects. Using unit root tests, we note that structural changes in Zimbabwe are generally marked by the period 1982 onwards. We find that mobile technology has a positive short-run (0.09 %) and long-run (0.08 %) impact on the output per capita. The structural changes post-1982 periods show positive impact in the short-run (0.06) and the long-run (0.09), whereas the coefficient of trend in the short-run (−0.03) and the long-run (−0.04) is negative. The Granger non-causality test shows a unidirectional causality from capital stock (investment) per capita to output per capita and a bi-directional causality between mobile cellular technology and output per capita. The plausible reasons for estimated magnitude effects and the direction of causality are explained for policy deliberation.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
For hybrid electric vehicles the batteries and the drive dc-link may be at different voltages. The batteries are at low voltage to obtain higher volumetric efficiencies and the dc-link is at higher voltage to have higher efficiency on the motor side. Therefore a power interface between the batteries and the drive's dc-link is essential. This power interface should handle power flow from battery to motor, motor to battery, external genset to battery and grid to battery. This paper proposes a multi power port topology which is capable of handling multiple power sources and still maintains simplicity and features like obtaining any gain, wide load variations, lower output current ripple and capability of parallel battery energy due to the modular structure. The development and testing of a bi-directional fly-back DC-DC converter for hybrid electric vehicle is described in this paper. Simple hysteresis voltage control is used for DC link voltage regulation. The experimental results are presented to show the working of the proposed converter.