959 resultados para Beta - 2
Resumo:
beta(2)-adrenergic receptor (beta(2)-AR) agonists have been used as ergogenics by athletes involved in training for strength and power in order to increase the muscle mass. Even though anabolic effects of beta(2)-AR activation are highly recognized, less is known about the impact of beta(2)-AR in endurance capacity. We presently used mice lacking beta(2)-AR [beta(2)-knockout (beta(2) KO)] to investigate the role of beta(2)-AR on exercise capacity and skeletal muscle metabolism and phenotype. beta(2) KO mice and their wild-type controls (WT) were studied. Exercise tolerance, skeletal muscle fiber typing, capillary-to-fiber ratio, citrate synthase activity and glycogen content were evaluated. When compared with WT, beta 2KO mice displayed increased exercise capacity (61%) associated with higher percentage of oxidative fibers (21% and 129% of increase in soleus and plantaris muscles, respectively) and capillarity (31% and 20% of increase in soleus and plantaris muscles, respectively). In addition, beta 2KO mice presented increased skeletal muscle citrate synthase activity (10%) and succinate dehydrogenase staining. Likewise, glycogen content (53%) and periodic acid-Schiff staining (glycogen staining) were also increased in beta 2KO skeletal muscle. Altogether, these data provide evidence that disruption of beta(2)AR improves oxidative metabolism in skeletal muscle of beta 2KO mice and this is associated with increased exercise capacity.
Resumo:
Background/Aims: beta(2)-adrenoceptor (beta(2)-AR) activation induces smooth muscle relaxation and endothelium-derived nitric oxide (NO) release. However, whether endogenous basal beta(2)-AR activity controls vascular redox status and NO bioavailability is unclear. Thus, we aimed to evaluate vascular reactivity in mice lacking functional beta(2)-AR (beta 2KO), focusing on the role of NO and superoxide anion. Methods and Results: Isolated thoracic aortas from beta 2KO and wild-type mice (WT) were studied. beta 2KO aortas exhibited an enhanced contractile response to phenylephrine compared to WT. Endothelial removal and L-NAME incubation increased phenylephrine-induced contraction, abolishing the differences between beta 2KO and WT mice. Basal NO availability was reduced in aortas from beta 2KO mice. Incubation of beta 2KO aortas with superoxide dismutase or NADPH inhibitor apocynin restored the enhanced contractile response to phenylephrine to WT levels. beta 2KO aortas exhibited oxidative stress detected by enhanced dihydroethidium fluorescence, which was normalized by apocynin. Protein expression of eNOS was reduced, while p47(phox) expression was enhanced in beta 2KO aortas. Conclusions: The present results demonstrate for the first time that enhanced NADPH-derived superoxide anion production is associated with reduced NO bioavailability in aortas of beta 2KO mice. This study extends the knowledge of the relevance of the endogenous activity of beta(2)-AR to the maintenance of the vascular physiology. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Skeletal muscles from old rats fail to completely regenerate following injury. This study investigated whether pharmacological stimulation of beta 2-adrenoceptors in aged muscles following injury could improve their regenerative capacity, focusing on myofiber size recovery. Young and aged rats were treated with a subcutaneous injection of beta 2-adrenergic agonist formoterol (2 mu g/kg/d) up to 10 and 21 days after soleus muscle injury. Formoterol-treated muscles from old rats evaluated at 10 and 21 days postinjury showed reduced inflammation and connective tissue but a similar number of regenerating myofibers of greater caliber when compared with their injured controls. Formoterol minimized the decrease in tetanic force and increased protein synthesis and mammalian target of rapamycin phosphorylation in old muscles at 10 days postinjury. Our results suggest that formoterol improves structural and functional regenerative capacity of regenerating skeletal muscles from aged rats by increasing protein synthesis via mammalian target of rapamycin activation. Furthermore, formoterol may have therapeutic benefits in recovery following muscle damage in senescent individuals.
Resumo:
Zolpidem is a positive allosteric modulator of GABA(A) receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABA(A) receptors containing the alpha(1) subunit, it has a lower affinity to GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits and has a very weak efficacy at receptors containing the alpha(5) subunit. Here, we show that replacing histidine in position 105 in the alpha(5) subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the alpha(5) subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to alpha(5)H105 in alpha(1), alpha(2), and alpha(3) are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines alpha(1)H101, alpha(2)H101, and alpha(3)H126 by arginine, as naturally present in alpha(4) and alpha(6), leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in alpha(5) containing receptors also for the action of zolpidem.
Resumo:
To study whether protein kinase C (PKC) isoforms can interact with protein-tyrosine-phosphatases (PTPs) which are connected to the insulin signaling pathway, we co-overexpressed PKC isoforms together with insulin receptor, docking proteins, and the PTPs SHP1 and SHP2 in human embryonic kidney (HEK) 293 cells. After phorbol ester induced activation of PKC isoforms alpha, beta 1, beta 2, and eta, we could show a defined gel mobility shift of SHP2, indicating phosphorylation on serine/threonine residues. This phosphorylation was not dependent on insulin receptor or insulin receptor substrate-1 (IRS-1) overexpression and did not occur for the closely related phosphatase SHP1. Furthermore, PKC phosphorylation of SHP2 was completely blocked by the PKC inhibitor bisindolylmaleimide and was not detectable when SHP2 was co-overexpressed with kinase negative mutants of PKC beta 1 and -beta 2. The phosphorylation also occurred on endogenous SHP2 in Chinese hamster ovary (CHO) cells stably overexpressing PKC beta 2. Using point mutants of SHP2, we identified serine residues 576 and 591 as phosphorylation sites for PKC. However, no change of phosphatase activity by TPA treatment was detected in an in vitro assay. In summary, SHP2 is phosphorylated on serine residues 576 and 591 by PKC isoforms alpha, beta 1, beta 2, and eta.
Resumo:
Caring for a spouse with Alzheimer's disease (AD) is associated with overall health decline and impaired cardiovascular functioning. This morbidity may be related to the effects of caregiving stress and impaired coping on beta(2)-adrenergic receptors, which mediate hemodynamic and vascular responses and are important for peripheral blood mononuclear cell (PBMC) trafficking and cytokine production. This study investigated the longitudinal relationship between stress, personal mastery, and beta(2)-adrenergic receptor sensitivity assessed in vitro on PBMC. Over a 5-year study, 115 spousal AD caregivers completed annual assessments of caregiving stress, mastery, and PBMC beta(2)-adrenergic receptor sensitivity, as assessed by in vitro isoproterenol stimulation. Heightened caregiving stress was associated with significantly decreased receptor sensitivity, whereas greater sense of personal mastery was associated with significantly increased receptor sensitivity. These results suggest that increased stress may be associated with a desensitization of beta(2)-receptors, which may contribute to the development of illness among caregivers. However, increased mastery is associated with increased receptor sensitivity, and may therefore serve as a resource factor for improved health in this population.
Resumo:
BACKGROUND β2-microglobulin has been increasingly investigated as a diagnostic marker of kidney function and a prognostic marker of adverse outcomes. To date, non-renal determinants of β2-microglobulin levels have not been well described. Non-renal determinants are important for the interpretation and appraisal of the diagnostic and prognostic value of any endogenous kidney function marker. METHODS This cross-sectional analysis was performed within the framework of the www.seniorlabor.ch study, which includes subjectively healthy individuals aged ≥ 60 years. Factors known or suspected to have a non-renal association with kidney function markers were investigated for a non-renal association with serum β2-microglobulin. As a marker of kidney function, the Berlin Initiative Study equation 2 for the estimation of the estimated glomerular filtration rate (eGFR(BIS2)) in the elderly was employed. RESULTS A total of 1302 participants (714 females and 588 males) were enrolled in the study. The use of a multivariate regression model adjusting for age, gender and kidney function (eGFR(BIS2)) revealed age, male gender, and C-reactive protein level to be positively associated with β2-microglobulin levels. In addition, there was an inverse non-renal relationship between systolic blood pressure, total cholesterol and current smoking status. No association with markers of diabetes mellitus, body stature, nutritional risk, thyroid function or calcium and phosphate levels was observed. CONCLUSIONS Serum β2-microglobulin levels in elderly subjects are related to several non-renal factors. These non-renal factors are not congruent to those known from other markers (i.e. cystatin C and creatinine) and remind of classical cardiovascular risk factors.
Resumo:
The beta 2 subunit of the interleukin (IL)-12 receptor (IL-12R beta 2) has been shown to play an essential role in differentiation of T helper 1 (Th1) cells in the murine and human system, and antibodies raised against IL-12R beta 2 recognized this molecule on human Th1 but not Th2 cells. However, while the cytokines secreted by clones of murine cells allowed the definition of distinct T helper cell subsets, bovine clones with polarized Th1 and Th2 cytokine profiles were rarely found. This raised important questions about the regulation of immune responses in cattle. We therefore cloned bovine IL-12R beta2 (boIL-12R beta 2) DNA complementary to RNA (cDNA) from the start codon to the 3' end of the mRNA. Comparison of boIL-12R beta 2 cDNA with human and murine IL-12R beta 2 cDNA sequences revealed homologies of 85 and 78%, respectively. The deduced protein sequence showed the hallmark motifs of the cytokine receptor superfamily including the four conserved cysteine residues, the WSXWS motif and fibronectin domains in the extracellular part as well as a STAT4 binding site in the intracellular part of the molecule. Using real-time reverse transcription-polymerase chain reaction, upregulation of mRNA expression of this molecule could be demonstrated in cultured bovine lymph node cells stimulated with phytohemagglutinin. Furthermore, cells with upregulated boIL-12R beta 2 mRNA responded with enhanced expression of interferon gamma to treatment with interleukin 12.
Resumo:
The CC chemokines regulated on activation normal T expressed and secreted (RANTES) and monocyte chemotactic protein 3 (MCP-3), and the anaphylatoxin C5a, induce activation, degranulation, chemotaxis, and transendothelial migration of eosinophils. Adhesion assays on purified ligands showed differential regulation of beta 1 and beta 2 integrin avidity in eosinophils. Adhesiveness of VLA-4 (alpha 4 beta 1, CD29/CD49d) for vascular cell adhesion molecule 1 or fibronectin was rapidly increased but subsequently reduced by RANTES, MCP-3, or C5a. The deactivation of VLA-4 lead to cell detachment, whereas phorbol 12-myristate 13-acetate induced sustained activation of VLA-4. In contrast, chemoattractants stimulated a prolonged increase in the adhesiveness of Mac-1 (alpha M beta 2, CD11b/CD18) for intercellular adhesion molecule 1. Inhibition by pertussis toxin confirmed signaling via G protein-coupled receptors. Chemoattractants induced transient, while phorbol 12-myristate 13-acetate induced sustained actin polymerization. Disruption of actin filaments by cytochalasins inhibited increases in avidity of VLA-4 but not of Mac-1. Chemoattractants did not upregulate a Mn2+-inducible beta 1 neoepitope defined by the mAb 9EG7, but induced prolonged expression of a Mac-1 activation epitope recognized by the mAb CBRM1/5. This mAb inhibited chemoattractant-stimulated adhesion of eosinophils to intercellular adhesion molecule 1. Thus, regulation of VLA-4 was dependent on the actin cytoskeleton, whereas conformational changes appeared to be crucial for activation of Mac-1. To our knowledge, this is the first demonstration that physiological agonists, such as chemoattractants, can differentially regulate the avidity of a beta 1 and a beta 2 integrin expressed on the same leukocyte.
Resumo:
A threonine to isoleucine polymorphism at amino acid 164 in the fourth transmembrane spanning domain of the beta 2-adrenergic receptor (beta 2AR) is known to occur in the human population. The functional consequences of this polymorphism to catecholamine signaling in relevant cells or to end-organ responsiveness, however, are not known. To explore potential differences between the two receptors, site-directed mutagenesis was carried out to mimic the polymorphism. Transgenic FVB/N mice were then created overexpressing wild-type (wt) beta 2AR or the mutant Ile-164 receptor in a targeted manner in the heart using a murine alpha myosin heavy chain promoter. The functional properties of the two receptors were then assessed at the level of in vitro cardiac myocyte signaling and in vivo cardiac responses in intact animals. The expression levels of these receptors in the two lines chosen for study were approximately 1200 fmol/mg protein in cardiac membranes, which represents a approximately 45-fold increase in expression over endogenous beta AR. Myocyte membrane adenylyl cyclase activity in the basal state was significantly lower in the Ile-164 mice (19.5 +/- 2.7 pmol/min/mg) compared with wt beta 2AR mice (35.0 +/- 4.1 pmol/min/mg), as was the maximal isoproterenol-stimulated activity (49.8 +/- 7.8 versus 77.1 +/ 7.3 pmol/min/mg). In intact animals, resting heart rate (441 +/- 21 versus 534 +/- 17 bpm) and dP/dtmax (10,923 +/- 730 versus 15,308 +/- 471 mmHg/sec) were less in the Ile-164 mice as compared with wt beta 2AR mice. Similarly, the physiologic responses to infused isoproterenol were notably less in the mutant expressing mice. Indeed, these values, as well as other contractile parameters, were indistinguishable between Ile-164 mice and nontransgenic littermates. Taken together, these results demonstrate that the Ile-164 polymorphism is substantially dysfunctional in a relevant target tissue, as indicated by depressed receptor coupling to adenylyl cyclase in myocardial membranes and impaired receptor mediated cardiac function in vivo. Under normal homeostatic conditions or in circumstances where sympathetic responses are compromised due to diseased states, such as heart failure, this impairment may have important pathophysiologic consequences.
Resumo:
To investigate the molecular mechanism for stereospecific binding of agonists to beta 2-adrenergic receptors we used receptor models to identify potential binding sites for the beta-OH-group of the ligand, which defines the chiral center. Ser-165, located in transmembrane helix IV, and Asn-293, situated in the upper half of transmembrane helix VI, were identified as potential binding sites. Mutation of Ser-165 to Ala did not change the binding of either isoproterenol isomer as revealed after transient expression in human embryonic kidney (HEK)-293 cells. In contrast, a receptor mutant in which Asn-293 was replaced by Leu showed substantial loss of stereospecific isoproterenol binding. Adenylyl cyclase stimulation by this mutant after stable expression in CHO cells confirmed the substantial loss of stereospecificity for isoproterenol. In a series of agonists the loss of affinity in the Leu-293 mutant receptor was strongly correlated with the intrinsic activity of the compounds. Full agonists showed a 10-30-fold affinity loss, whereas partial agonists had almost the same affinity for both receptors. Stereospecific recognition of antagonists was unaltered in the Leu-293 mutant receptor. These data indicate a relationship between stereospecificity and intrinsic activity of agonists and suggest that Asn-293 is important for both properties of the agonist-receptor interaction.
Resumo:
It is known that beta 2 integrins are crucial for leukocyte cell-cell and cell-matrix interactions, and accumulating evidence now suggests that integrins serve not only as a structural link but also as a signal-transducing unit that controls adhesion-induced changes in cell functions. In the present study, we plated human neutrophils on surface-bound anti-beta 2 (CD18) antibodies and found that the small GTP-binding protein p21ras is activated by beta 2 integrins. Pretreatment of the cells with genistein, a tyrosine kinase inhibitor, led to a complete block of p21ras activation, an effect that was not achieved with either U73122, which abolishes the beta 2 integrin-induced Ca2+ signal, or wortmannin, which totally inhibits the phosphatidylinositol 3-kinase activity. Western blot analysis revealed that antibody-induced engagement of beta 2 integrins causes tyrosine phosphorylation of several proteins in the cells. One of these tyrosine-phosphorylated proteins had an apparent molecular mass of 95 kDa and was identified as the protooncogene product Vav, a p21ras guanine nucleotide exchange factor that is specifically expressed in cells of hematopoietic lineage. A role for Vav in the activation of p21ras is supported by the observations that antibody-induced engagement of beta 2 integrins causes an association of Vav with p21ras and that the effect of genistein on p21ras activation coincided with its ability to inhibit both the tyrosine phosphorylation of Vav and the Vav-p21ras association. Taken together, these results indicate that antibody-induced engagement of beta 2 integrins on neutrophils triggers tyrosine phosphorylation of Vav and, possibly through its association, a downstream activation of p21ras.
Resumo:
By using RAR type (alpha, beta, or gamma)-specific synthetic retinoids and a pan-retinoic X receptor (RXR)-specific ligand, we have investigated the contribution of RARs and RXRs in the activation of RA target genes and the differentiation of embryonal carcinoma cells. We demonstrate cell-type- and promoter context-dependent functional redundancies that differ between the three RAR types for mediating the induction of RARbeta2 and Hoxa-1 in wild-type, RARgamma-/- and RARalpha-/- F9 cells and in P19 cells. The extent of redundancy between RARs is further modulated by the synergistic activation of RXRs with a pan-RXR agonist. We also demonstrate that the expression of RARbeta2 is auto-inducible in RARgamma-/- but not in wild-type F9 cells, indicating that the functional redundancies observed between RARs in gene disruption studies can be artefactually generated. Thus, even though all three RARs can functionally substitute each other for inducing the expression of RA target genes and cell differentiation, one RAR can cell-specifically override the activity of the other RARs. Interestingly, only RARgamma can mediate the retinoic acid-induced differentiation of wild-type F9 cells, whereas the differentiation of P19 cells can be mediated by either RARalpha or RARgamma.
Resumo:
beta-2-Microglobulin (beta-2m) is a major constituent of amyloid fibrils in patients with dialysis-related amyloidosis (DRA). Recently, we found that the pigmented and fluorescent adducts formed nonenzymatically between sugar and protein, known as advanced glycation end products (AGEs), were present in beta-2m-containing amyloid fibrils, suggesting the possible involvement of AGE-modified beta-2m in bone and joint destruction in DRA. As an extension of our search for the native structure of AGEs in beta-2m of patients with DRA, the present study focused on pentosidine, a fluorescent cross-linked glycoxidation product. Determination by both HPLC assay and competitive ELISA demonstrated a significant amount of pentosidine in amyloid-fibril beta-2m from long-term hemodialysis patients with DRA, and the acidic isoform of beta-2m in the serum and urine of hemodialysis patients. A further immunohistochemical study revealed the positive immunostaining for pentosidine and immunoreactive AGEs and beta-2m in macrophage-infiltrated amyloid deposits of long-term hemodialysis patients with DRA. These findings implicate a potential link of glycoxidation products in long-lived beta-2m-containing amyloid fibrils to the pathogenesis of DRA.