969 resultados para Bellingshausen Sea, slope on TMF
The impact of sea ice on the initiation of the spring bloom on the Newfoundland and Labrador Shelves
Resumo:
The air-sea exchange of two legacy persistent organic pollutants (POPs), γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization), wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009). The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2–3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.
Resumo:
The composition and variability of heterotrophic bacteria along the shelf sediments of south west coast of India and its relationship with the sediment biogeochemistry was investigated. The bacterial abundance ranged from 1.12 x 103 – 1.88 x 106 CFU g-1 dry wt. of sediment. The population showed significant positive correlation with silt (r = 0.529, p< 0.05), organic carbon (OC) (r = 0.679, p< 0.05), total nitrogen (TN) (r = 0.638, p< 0.05), total protein (TPRT) (r = 0.615, p< 0.05) and total carbohydrate (TCHO) (r = 0.675, p< 0.05) and significant negative correlation with sand (r = -0.488, p< 0.05). Community was mainly composed of Bacillus, Alteromonas, Vibrio, Coryneforms, Micrococcus, Planococcus, Staphylococcus, Moraxella, Alcaligenes, Enterobacteriaceae, Pseudomonas, Acinetobacter, Flavobacterium and Aeromonas. BIOENV analysis explained the best possible environmental parameters i.e., carbohydrate, total nitrogen, temperature, pH and sand at 50m depth and organic matter, BPC, protein, lipid and temperature at 200m depth controlling the distribution pattern of heterotrophic bacterial population in shelf sediments. The Principal Component Analysis (PCA) of the environmental variables showed that the first and second principal component accounted for 65% and 30.6% of the data variance respectively. Canonical Correspondence Analysis (CCA) revealed a strong correspondence between bacterial distribution and environmental variables in the study area. Moreover, non-metric MDS (Multidimensional Scaling) analysis demarcated the northern and southern latitudes of the study area based on the bioavailable organic matter
Resumo:
The new HadKPP atmosphere–ocean coupled model is described and then used to determine the effects of sub-daily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intra-seasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K Profile Parameterization ocean-boundary-layer model. Four 30-member ensembles were performed that varied in oceanic vertical resolution between 1 m and 10 m and in coupling frequency between 3 h and 24 h. The 10 m, 24 h ensemble exhibited roughly 60% of the observed 30–50 day variability in sea-surface temperatures and rainfall and very weak northward propagation. Enhancing either only the vertical resolution or only the coupling frequency produced modest improvements in variability and only a standing intra-seasonal oscillation. Only the 1 m, 3 h configuration generated organized, northward-propagating convection similar to observations. Sub-daily surface forcing produced stronger upper-ocean temperature anomalies in quadrature with anomalous convection, which likely affected lower-atmospheric stability ahead of the convection, causing propagation. Well-resolved air–sea coupling did not improve the eastward propagation of the boreal summer intra-seasonal oscillation in this model. Upper-ocean vertical mixing and diurnal variability in coupled models must be improved to accurately resolve and simulate tropical sub-seasonal variability. In HadKPP, the mere presence of air–sea coupling was not sufficient to generate an intra-seasonal oscillation resembling observations.
Resumo:
This study examines the influence of Antarctic sea ice distribution on the large scale circulation of the Southern Hemisphere using a fully coupled GCM where the sea ice submodel is replaced by a climatology of observed extremes in sea ice concentration. Three 150-year simulations were completed for maximum, minimum and average sea ice concentrations and the results for the austral summer (January-March) were compared using the surface temperatures forced by the sea ice distributions as a filter for creating the composite differences. The results indicate that in the austral summer the polar cell expands (contracts) under minimum (maximum) sea ice conditions with corresponding shifts in the midlatitude Ferrell cell. We suggest that this response occurs because sea ice lies in the margin between the polar and midlatitude cells. The polarity of the Southern Hemisphere Annular (SAM) mode is also influenced such that when sea ice is at a minimum (maximum) the polarity of the SAM tends to be negative (positive).
Resumo:
Ocean temperatures are rising throughout the world, making it necessary to evaluate the impact of these temperature changes on sea urchins, which are well-known bioindicators. This study evaluated the effect of an increase in temperature on the immune response of the subtidal Lytechinus variegatus and the intertidal Echinometra lucunter sea urchins. Both species were exposed to 20 (control), 25 and 30 °C temperatures for 24 h, 2, 7 and 14 days. Counting of coelomocytes and assays on the phagocytic response, adhesion and spreading of coelomocytes were performed. Red and colorless sphere cells were considered biomarkers for heat stress. Moreover, a significant decrease in the phagocytic indices and a decrease in both cell adhesion and cell spreading were observed at 25 and 30 °C for L. variegatus. For E. lucunter, the only alteration observed was for the cell proportions. This report shows how different species of sea urchins respond immunologically to rising temperatures