975 resultados para Bearing capacity


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the construction of five residential buildings in the city of Taubate, State of São Paulo, it was possible to carry out one comprehensive investigation of the behavior of precast concrete piles in clay shales. This paper describes the results of Dynamic Load Tests (DLT's) executed in three piles with different diameters and with the same embedded length. The tests were monitored using the PDA(R) (Pile Driving Analyzer) and the pile top displacement was measured by pencil and paper procedure. From the curves of RMX versus DMX resulted from CASE(R) method, CAPWAPC(R) analyses were made for signals where the maximum mobilized soil resistance was verified. The results were compared with the predicted bearing capacity using the semi-empirical method of Decourt & Quaresma (1978) and Decourt (1982) based on SPT values and the description of the soil profile. Some comments related to the values of quake and damping used for clay shales in the analyses are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compaction is one of the most important processes in roadway construction. It is needed to achieve high quality and uniformity of pavement materials, which in turn better ensure long lasting performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sokolovskii’s method of characteristics is extended to provide analytical solutions for the ultimate load at the moment of plastic failure under plane-strain conditions of shallow strip foundations on weightless rigid-plastic media with a noncohesive power-law failure envelope. The formulation is made parametrically in terms of the instantaneous friction angle, and the key idea to obtain the bearing capacity is that information can be transmitted from the free surface (where external loads are known) to the contact plane of the foundation. The methodology can consider foundations adjacent to a slope, external surcharges at the free surface, and inclined loads (both on the slope and on the foundation). Sensitivity analyses illustrate the influence on bearing capacity of changes in the different geometrical parameters involved. An application example is presented and design plots are provided, and model predictions are compared with results of bearing capacity tests under low gravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highlights of this paper: a method for calculating the ultimate bearing capacity at the tip of a pile is presented; ultimate bearing capacity is generalized for the modified Hoek–Brown criterion; perfect plasticity, isotropy, weightless rock media, without inertial forces, Meyerhof׳s hypothesis are considered; all the formulation can be programmed in a spreadsheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reinforced concrete structures are susceptible to a variety of deterioration mechanisms due to creep and shrinkage, alkali-silica reaction (ASR), carbonation, and corrosion of the reinforcement. The deterioration problems can affect the integrity and load carrying capacity of the structure. Substantial research has been dedicated to these various mechanisms aiming to identify the causes, reactions, accelerants, retardants and consequences. This has improved our understanding of the long-term behaviour of reinforced concrete structures. However, the strengthening of reinforced concrete structures for durability has to date been mainly undertaken after expert assessment of field data followed by the development of a scheme to both terminate continuing degradation, by separating the structure from the environment, and strengthening the structure. The process does not include any significant consideration of the residual load-bearing capacity of the structure and the highly variable nature of estimates of such remaining capacity. Development of performance curves for deteriorating bridge structures has not been attempted due to the difficulty in developing a model when the input parameters have an extremely large variability. This paper presents a framework developed for an asset management system which assesses residual capacity and identifies the most appropriate rehabilitation method for a given reinforced concrete structure exposed to aggressive environments. In developing the framework, several industry consultation sessions have been conducted to identify input data required, research methodology and output knowledge base. Capturing expert opinion in a useable knowledge base requires development of a rule based formulation, which can subsequently be used to model the reliability of the performance curve of a reinforced concrete structure exposed to a given environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The potential use of YBa2Cu3C7as an active component in a magnetic bearing is being investigated. Measurements are being made of the load bearing capacity and related stiffnesses in comparison to predictions from the critical state model. Although the load bearing capacity is high and increases with the square of the magnetic field trapped the stiffness is low. We report on a novel design concept to overcome this problem. © 1995 IEEE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold-formed steel members are widely used in residential, industrial and commercial buildings as primary load-bearing elements. During fire events, they will be exposed to elevated temperatures. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the load bearing capacity of cold-formed steel members in these buildings has been affected. Hence after such fire events there is a need to evaluate the residual strength of these members. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past. This means conservative decisions are likely to be made in relation to fire exposed cold-formed steel buildings. Therefore an experimental study was undertaken to investigate the post-fire mechanical properties of cold-formed steels. Tensile coupons taken from cold-formed steel sheets of three different steel grades and thicknesses were exposed to different elevated temperatures up to 800 oC, and were then allowed to cool down to ambient temperature before they were tested to failure. Tensile coupon tests were conducted to obtain their post-fire stress-strain curves and associated mechanical properties (yield stress, Young’s modulus, ultimate strength and ductility). It was found that the post-fire mechanical properties of cold-formed steels are reduced below the original ambient temperature mechanical properties if they had been exposed to temperatures exceeding 300 oC. Hence a new set of equations is proposed to predict the post-fire mechanical properties of cold-formed steels. Such post-fire mechanical property assessments allow structural and fire engineers to make an accurate prediction of the safety of fire exposed cold-formed steel buildings. This paper presents the details of this experimental study and the results of post-fire mechanical properties of cold-formed steels. It also includes the results of a post-fire evaluation of cold-formed steel walls.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steel hollow sections used in structures such as bridges, buildings and space structures involve different strengthening techniques according to their structural purpose and shape of the structural member. One such technique is external bonding of CFRP sheets to steel tubes. The performance of CFRP strengthening for steel structures has been proven under static loading while limited studies have been conducted on their behaviour under impact loading. In this study, a comprehensive numerical investigation is carried out to evaluate the response of CFRP strengthened steel tubes under dynamic axial impact loading. Impact force, axial deformation impact velocities are studied. The results of the numerical investigations are validated by experimental results. Based on the developed finite element (FE) model several output parameters are discussed. The results show that CFRP wrapping is an effective strengthening technique to increase the axial dynamic load bearing capacity by increasing the stiffness of the steel tube.