984 resultados para Bayesian method
Resumo:
Results are reported of a search for a deviation in the jet production cross section from the prediction of perturbative quantum chromodynamics at next-to-leading order. The search is conducted using a 7 TeV proton-proton data sample corresponding to an integrated luminosity of 5.0 fb-1, collected with the Compact Muon Solenoid detector at the Large Hadron Collider. A deviation could arise from interactions characterized by a mass scale Λ too high to be probed directly at the LHC. Such phenomena can be modeled as contact interactions. No evidence of a deviation is found. Using the CL s criterion, lower limits are set on Λ of 9.9 TeV and 14.3 TeV at 95% confidence level for models with destructive and constructive interference, respectively. Limits obtained with a Bayesian method are also reported. © 2013 CERN.
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBRC
Resumo:
A raiva é uma das zoonoses mais antigas e temidas pelo homem devido a seu desfecho fatal. Os cães ainda são considerados os principais responsáveis pela manutenção e transmissão da raiva para o homem. Porém, nos últimos anos os morcegos hematófagos têm ganhado destaque como potenciais transmissores de raiva para animais e humanos nas Américas. Recentemente, várias epidemias de raiva humana transmitida por morcegos hematófagos foram relatados no estado do Pará, o que mostra uma grande alteração no ambiente natural destes animais. A amplificação parcial do gene N pela técnica de RT-PCR foi aplicada em 62 amostras positivas para o Vírus da raiva, pela imunofluorescência direta e prova biológica. As seqüências nucleotídicas obtidas foram comparadas entre si e com outras amostras de vírus rábico isoladas no Brasil, utilizando os métodos de análise filogenética máxima verossimilhança e Bayesiano. Estas análises permitiram traçar o perfil epidemiológico molecular das variantes virais circulantes no estado do Pará, observando a emergência da transmissão de casos associados à variante antigênica 3 (VAg3), comumente encontrada em morcegos hematófagos Desmodus rotundus em detrimento dos casos relacionados à variante antigênica 2 (VAg2) associada a cães domésticos, bem como a identificação de três linhagens genéticas relacionadas a VAg3 e uma relacionada a VAg2 e uma possível nova variante isolada de morcego frugívoro Uroderma bilobatum.
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
A expansão da obesidade em diversos países do mundo na última década tem resultado no aumento da morbidade e mortalidade por hipertensão arterial e suas complicações. O objetivo deste trabalho é analisar a distribuição espacial da obesidade e hipertensão arterial no estado de São Paulo no período de 2000 a 2010, a partir de registros hospitalares e internação do Sistema de Informações Hospitalares do Sistema Único de Saúde (SIH - SUS). Foram utilizados coeficientes de prevalência das doenças em cada município suavizadas pelo método bayesiano empírico, permitindo uma visualização do padrão espacial dessas morbidades no Estado. Foi explorada a dependência espacial destes padrões verificando a autocorrelação entre os indicadores por meio do cálculo do Índice de Autocorrelação Espacial de Moran. Além disso, estudou-se a correlação positiva (Pearson) entre obesidade e hipertensão. Os dados e os mapas mostraram clusters de 87 municípios onde há maior e menor prevalência de hipertensão e obesidade no espaço com forte autocorrelação entre os municípios vizinhos. O coeficiente correlação de Pearson encontrado para esses municípios foi de 0,404 e sugere associação entre as morbidades. As técnicas de análise espacial mostraram-se úteis para o planejamento de ações de saúde pública.
Resumo:
Background: The evaluation of associations between genotypes and diseases in a case-control framework plays an important role in genetic epidemiology. This paper focuses on the evaluation of the homogeneity of both genotypic and allelic frequencies. The traditional test that is used to check allelic homogeneity is known to be valid only under Hardy-Weinberg equilibrium, a property that may not hold in practice. Results: We first describe the flaws of the traditional (chi-squared) tests for both allelic and genotypic homogeneity. Besides the known problem of the allelic procedure, we show that whenever these tests are used, an incoherence may arise: sometimes the genotypic homogeneity hypothesis is not rejected, but the allelic hypothesis is. As we argue, this is logically impossible. Some methods that were recently proposed implicitly rely on the idea that this does not happen. In an attempt to correct this incoherence, we describe an alternative frequentist approach that is appropriate even when Hardy-Weinberg equilibrium does not hold. It is then shown that the problem remains and is intrinsic of frequentist procedures. Finally, we introduce the Full Bayesian Significance Test to test both hypotheses and prove that the incoherence cannot happen with these new tests. To illustrate this, all five tests are applied to real and simulated datasets. Using the celebrated power analysis, we show that the Bayesian method is comparable to the frequentist one and has the advantage of being coherent. Conclusions: Contrary to more traditional approaches, the Full Bayesian Significance Test for association studies provides a simple, coherent and powerful tool for detecting associations.
Resumo:
Objective The Brazilian National Hansens Disease Control Program recently identified clusters with high disease transmission. Herein, we present different spatial analytical approaches to define highly vulnerable areas in one of these clusters. Method The study area included 373 municipalities in the four Brazilian states Maranha o, Para ', Tocantins and Piaui '. Spatial analysis was based on municipalities as the observation unit, considering the following disease indicators: (i) rate of new cases / 100 000 population, (ii) rate of cases < 15 years / 100 000 population, (iii) new cases with grade-2 disability / 100 000 population and (iv) proportion of new cases with grade-2 disabilities. We performed descriptive spatial analysis, local empirical Bayesian analysis and spatial scan statistic. Results A total of 254 (68.0%) municipalities were classified as hyperendemic (mean annual detection rates > 40 cases / 100 000 inhabitants). There was a concentration of municipalities with higher detection rates in Para ' and in the center of Maranha o. Spatial scan statistic identified 23 likely clusters of new leprosy case detection rates, most of them localized in these two states. These clusters included only 32% of the total population, but 55.4% of new leprosy cases. We also identified 16 significant clusters for the detection rate < 15 years and 11 likely clusters of new cases with grade-2. Several clusters of new cases with grade-2 / population overlap with those of new cases detection and detection of children < 15 years of age. The proportion of new cases with grade-2 did not reveal any significant clusters. Conclusions Several municipality clusters for high leprosy transmission and late diagnosis were identified in an endemic area using different statistical approaches. Spatial scan statistic is adequate to validate and confirm high-risk leprosy areas for transmission and late diagnosis, identified using descriptive spatial analysis and using local empirical Bayesian method. National and State leprosy control programs urgently need to intensify control actions in these highly vulnerable municipalities.
Resumo:
We describe a Bayesian method for estimating the number of essential genes in a genome, on the basis of data on viable mutants for which a single transposon was inserted after a random TA site in a genome,potentially disrupting a gene. The prior distribution for the number of essential genes was taken to be uniform. A Gibbs sampler was used to estimate the posterior distribution. The method is illustrated with simulated data. Further simulations were used to study the performance of the procedure.
Toward an early diagnosis of lung cancer: an autoantibody signature for squamous cell lung carcinoma
Resumo:
Serum-based diagnosis offers the prospect of early lung carcinoma detection and of differentiation between benign and malignant nodules identified by CT. One major challenge toward a future blood-based diagnostic consists in showing that seroreactivity patterns allow for discriminating lung cancer patients not only from normal controls but also from patients with non-tumor lung pathologies. We addressed this question for squamous cell lung cancer, one of the most common lung tumor types. Using a panel of 82 phage-peptide clones, which express potential autoantigens, we performed serological spot assay. We screened 108 sera, including 39 sera from squamous cell lung cancer patients, 29 sera from patients with other non-tumor lung pathologies, and 40 sera from volunteers without known disease. To classify the serum groups, we employed the standard Naïve Bayesian method combined with a subset selection approach. We were able to separate squamous cell lung carcinoma and normal sera with an accuracy of 93%. Low-grade squamous cell lung carcinoma were separated from normal sera with an accuracy of 92.9%. We were able to distinguish squamous cell lung carcinoma from non-tumor lung pathologies with an accuracy of 83%. Three phage-peptide clones with sequence homology to ROCK1, PRKCB1 and KIAA0376 reacted with more than 15% of the cancer sera, but neither with normal nor with non-tumor lung pathology sera. Our study demonstrates that seroreactivity profiles combined with statistical classification methods have great potential for discriminating patients with squamous cell lung carcinoma not only from normal controls but also from patients with non-tumor lung pathologies.
Resumo:
PURPOSE Therapeutic drug monitoring of patients receiving once daily aminoglycoside therapy can be performed using pharmacokinetic (PK) formulas or Bayesian calculations. While these methods produced comparable results, their performance has never been checked against full PK profiles. We performed a PK study in order to compare both methods and to determine the best time-points to estimate AUC0-24 and peak concentrations (C max). METHODS We obtained full PK profiles in 14 patients receiving a once daily aminoglycoside therapy. PK parameters were calculated with PKSolver using non-compartmental methods. The calculated PK parameters were then compared with parameters estimated using an algorithm based on two serum concentrations (two-point method) or the software TCIWorks (Bayesian method). RESULTS For tobramycin and gentamicin, AUC0-24 and C max could be reliably estimated using a first serum concentration obtained at 1 h and a second one between 8 and 10 h after start of the infusion. The two-point and the Bayesian method produced similar results. For amikacin, AUC0-24 could reliably be estimated by both methods. C max was underestimated by 10-20% by the two-point method and by up to 30% with a large variation by the Bayesian method. CONCLUSIONS The ideal time-points for therapeutic drug monitoring of once daily administered aminoglycosides are 1 h after start of a 30-min infusion for the first time-point and 8-10 h after start of the infusion for the second time-point. Duration of the infusion and accurate registration of the time-points of blood drawing are essential for obtaining precise predictions.
Continental-Scale Footprint of Balancing and Positive Selection in a Small Rodent (Microtus arvalis)
Resumo:
Genetic adaptation to different environmental conditions is expected to lead to large differences between populations at selected loci, thus providing a signature of positive selection. Whereas balancing selection can maintain polymorphisms over long evolutionary periods and even geographic scale, thus leads to low levels of divergence between populations at selected loci. However, little is known about the relative importance of these two selective forces in shaping genomic diversity, partly due to difficulties in recognizing balancing selection in species showing low levels of differentiation. Here we address this problem by studying genomic diversity in the European common vole (Microtus arvalis) presenting high levels of differentiation between populations (average FST = 0.31). We studied 3,839 Amplified Fragment Length Polymorphism (AFLP) markers genotyped in 444 individuals from 21 populations distributed across the European continent and hence over different environmental conditions. Our statistical approach to detect markers under selection is based on a Bayesian method specifically developed for AFLP markers, which treats AFLPs as a nearly codominant marker system, and therefore has increased power to detect selection. The high number of screened populations allowed us to detect the signature of balancing selection across a large geographic area. We detected 33 markers potentially under balancing selection, hence strong evidence of stabilizing selection in 21 populations across Europe. However, our analyses identified four-times more markers (138) being under positive selection, and geographical patterns suggest that some of these markers are probably associated with alpine regions, which seem to have environmental conditions that favour adaptation. We conclude that despite favourable conditions in this study for the detection of balancing selection, this evolutionary force seems to play a relatively minor role in shaping the genomic diversity of the common vole, which is more influenced by positive selection and neutral processes like drift and demographic history.
Resumo:
Living at high altitude is one of the most difficult challenges that humans had to cope with during their evolution. Whereas several genomic studies have revealed some of the genetic bases of adaptations in Tibetan, Andean, and Ethiopian populations, relatively little evidence of convergent evolution to altitude in different continents has accumulated. This lack of evidence can be due to truly different evolutionary responses, but it can also be due to the low power of former studies that have mainly focused on populations from a single geographical region or performed separate analyses on multiple pairs of populations to avoid problems linked to shared histories between some populations. We introduce here a hierarchical Bayesian method to detect local adaptation that can deal with complex demographic histories. Our method can identify selection occurring at different scales, as well as convergent adaptation in different regions. We apply our approach to the analysis of a large SNP data set from low- and high-altitude human populations from America and Asia. The simultaneous analysis of these two geographic areas allows us to identify several candidate genome regions for altitudinal selection, and we show that convergent evolution among continents has been quite common. In addition to identifying several genes and biological processes involved in high-altitude adaptation, we identify two specific biological pathways that could have evolved in both continents to counter toxic effects induced by hypoxia.