970 resultados para Batch reactor


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of chemical and biological water treatment processes is a promising technique to reduce recalcitrant wastewater loads. The key to the efficiency of such a system is a better understanding of the mechanisms involved during the degradation processes. Ozonation has been applied to many fields in water and wastewater treatment. Especially for effluents of textile finishing industry ozonation can achieve high color removal, enhance biodegradability, destroy phenols and reduce the COD. However, little is known about the reaction intermediates and products formed during ozonation. This work focuses on the oxidative degradation of purified (>90%), hydrolyzed Reactive Red 120 (Color Index), a widely used azo dye in the textile finishing processes with two monochlorotriazine anchor groups. Ozonation of the dye in ultra pure water was performed in a laboratory scale cylindrical batch reactor. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the visible range (53 5 nm), was almost complete after 150 min with an ozone concentration of 12.8 mg/l. The TOC/TOC0 ratio was about 74% and the COD was diminished to 46% of the initial value. The BOD5/COD ratio increased from 0.01 to 0.14. To obtain detailed information on the reaction processes during ozonation and the resulting oxidation products organic and inorganic anions were analyzed. Oxidation and cleavage of the azo group yielded nitrate. Cleavage of the sulfonic acid groups of aromatic rings caused an increase in the amount of sulfate. Formic acid and oxalic acid were identified as main oxidation products by high performance ion chromatography (HPIC). The concentrations of these major products were monitored at defined time intervals during ozonation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The overall aim of this work was to establish the optimum conditions for acid hydrolysis of hemicellulosic biomass in the form of potato peel. The hydrolysis reaction was undertaken in a 1l high pressure pilot batch reactor using dilute phosphoric acid. Analysis of the decomposition rate of hemicellulosic biomass (namely Cellulose, Hemicellulose and lignin) was undertaken using HPLC of the reaction products namely, 5 and 6 carbon sugars. Process parameters investigated included, reactor temperature (from 135 degrees C to 200 degrees C) and acid concentration (from 2.5% (w/w) to 10% (w/w)). Analysis of the reactor products indicated that high conversion of cellulose to glucose was apparent although arabinose conversion was quite low due to thermally un-stability. However, an overall sugar yield is 82.5% was achieved under optimum conditions. This optimum yield was obtained at 135 degrees C and 10% (w/w) acid concentration. 55.2 g sugar/100 g dry potato peel is produced after a time of 8 min. The work indicates that the use of potato peel may be a feasible option as a feed material for the production of sugars for biofuel synthesis, due its low cost and high sugar yields. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of Al incorporation and pH adjustment during hydrolysis of the silica precursor on the thermal and structural stability of ordered microporous silica films with a 2D structure is presented. The structural stability of the films was determined from a combination of LA XRD/TEM data with porosity data obtained from ethanol adsorption isotherms. Thermogravimetric analysis and MR data were used to determine the template removal and the thermal stability. Stability of aluminium incorporated silica films has further been examined in several organic solvents with different polarity. A solvent with a higher polarity interacts more strongly with the films; the long-order structure disappeared after exposure to polar solvents. After exposure to non-polar solvents, the pore size uniformity was retained after 48 h. The samples with an Al/Si ratio of 0.007 showed the smallest d-spacing shift after exposure to hexane. The stability was further tested in the hydrogenation of phenylacetylene performed in a batch reactor over 1 wt.% Pd/Si(Al)O-2/Si (Al/Si = 0.007) films at 30 degrees C and 10 bar H-2 with hexane as solvent. No deactivation was observed in two subsequent hydrogenation runs. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photocatalytic efficiencies of laboratory made and commercial TiO2 samples were compared using a standard test reaction: the photomineralization of 4-chlorophenol (4-CP) to CO2, H2O and HCl mediated by Degussa P25 TiO2 in a batch reactor. The results show that the rate of photodegradation of 4-CP, sensitized by a sample of TiO2, shows no clear simple dependence on physical characteristics such as the degree of crystallinity, the surface area and the percentage of H2O.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of milli-scale processing and microwave heating has been investigated for the Cu-catalyzed Ullmann etherification in fine-chemical synthesis, providing improved catalytic activity and selective catalyst heating. Wall-coated and fixed-bed milli-reactors were designed and applied in the Cu-catalyzed Ullmann-type CO coupling of phenol and 4-chloropyridine. In a batch reactor the results show clearly increased yields for the microwave heated process at low microwave powers, whereas high powers and catalyst loadings reduced the benefits of microwave heating. Slightly higher yields were found in the Cu/ZnO wall-coated as compared to the Cu/TiO fixed-bed flow-reactor. The benefit here is that the reaction occurs at the surface of the metal nanoparticles confined within a support film making the nano-copper equally accessible. Catalyst deactivation was mainly caused by Cu oxidation and coke formation; however, at longer process times leaching played a significant role. Catalyst activity could partially be recovered by removal of deposited by-product by means of calcination. After 6h on-stream the reactor productivities were 28.3 and 55.1kgprod/(mR3h) for the fresh Cu/ZnO wall-coated and Cu/TiO fixed-bed reactor, respectively. Comparison of single- and multimode microwaves showed a threefold yield increase for single-mode microwaves. Control of nanoparticles size and loading allows to avoid high temperatures in a single-mode microwave field and provides a novel solution to a major problem for combining metal catalysis and microwave heating. Catalyst stability appeared to be more important and provided twofold yield increase for the CuZn/TiO catalyst as compared to the Cu/TiO catalyst due to stabilized copper by preferential oxidation of the zinc. For this catalyst a threefold yield increase was observed in single-mode microwaves which, to the best of our knowledge, led to a not yet reported productivity of 172kgprod/(mR3h) for the microwave and flow Ullmann CO coupling. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A vida da sociedade atual é dependente dos recursos fósseis, tanto a nível de energia como de materiais. No entanto, tem-se verificado uma redução das reservas destes recursos, ao mesmo tempo que as necessidades da sociedade continuam a aumentar, tornando cada vez mais necessárias, a produção de biocombustíveis e produtos químicos. Atualmente o etanol é produzido industrialmente a partir da cana-de-açúcar e milho, matérias-primas usadas na alimentação humana e animal. Este fato desencadeou o aumento de preços dos alimentos em todo o mundo e, como consequência, provocou uma série de distúrbios sociais. Os subprodutos industriais, recursos independentes das cadeias alimentares, têm-se posicionado como fonte de matérias-primas potenciais para bioprocessamento. Neste sentido, surgem os subprodutos gerados em grande quantidade pela indústria papeleira. Os licores de cozimento da madeira ao sulfito ácido (SSLs) são uma matériaprima promissora, uma vez que durante este processo os polissacarídeos da madeira são hidrolisados originando açúcares fermentáveis. A composição dos SSLs varia consoante o tipo de madeira usada no processo de cozimento (de árvores resinosas, folhosas ou a mistura de ambas). O bioprocessamento do SSL proveniente de folhosas (HSSL) é uma metodologia ainda pouco explorada. O HSSL contém elevadas concentrações de açúcares (35-45 g.L-1), na sua maioria pentoses. A fermentação destes açúcares a bioetanol é ainda um desafio, uma vez que nem todos os microrganismos são capazes de fermentar as pentoses a etanol. De entre as leveduras capazes de fermentar naturalmente as pentoses, destaca-se a Scheffersomyces stipitis, que apresenta uma elevada eficiência de fermentação. No entanto, o HSSL contém também compostos conhecidos por inibirem o crescimento de microrganismos, dificultando assim o seu bioprocessamento. Neste sentido, o principal objetivo deste trabalho foi a produção de bioetanol pela levedura S. stipitis a partir de HSSL, resultante do cozimento ao sulfito ácido da madeira de Eucalyptus globulus. Para alcançar este objetivo, estudaram-se duas estratégias de operação diferentes. Em primeiro lugar estudou-se a bio-desintoxicação do HSSL com o fungo filamentoso Paecilomyces variotii, conhecido por crescer em resíduos industriais. Estudaram-se duas tecnologias fermentativas diferentes para a biodesintoxicação do HSSL: um reator descontínuo e um reator descontínuo sequencial (SBR). A remoção biológica de inibidores do HSSL foi mais eficaz quando se usou o SBR. P. variotii assimilou alguns inibidores microbianos como o ácido acético, o ácido gálico e o pirogalol, entre outros. Após esta desintoxicação, o HSSL foi submetido à fermentação com S. stipitis, na qual foi atingida a concentração máxima de etanol de 2.36 g.L-1 com um rendimento de 0.17 g.g-1. P. variotti, além de desintoxicar o HSSL, também é útil na produção de proteína microbiana (SCP) para a alimentação animal pois, a sua biomassa é rica em proteína. O estudo da produção de SCP por P. variotii foi efetuado num SBR com HSSL sem suplementos e suplementado com sais. A melhor produção de biomassa foi obtida no HSSL sem adição de sais, tendo-se obtido um teor de proteína elevado (82,8%), com uma baixa concentração de DNA (1,1%). A proteína continha 6 aminoácidos essenciais, mostrando potencial para o uso desta SCP na alimentação animal e, eventualmente, em nutrição humana. Assim, a indústria papeleira poderá integrar a produção de bioetanol após a produção SCP e melhorar a sustentabilidade da indústria de pastas. A segunda estratégia consistiu em adaptar a levedura S. stipitis ao HSSL de modo a que esta levedura conseguisse crescer e fermentar o HSSL sem remoção de inibidores. Operou-se um reator contínuo (CSTR) com concentrações crescentes de HSSL, entre 20 % e 60 % (v/v) durante 382 gerações em HSSL, com uma taxa de diluição de 0.20 h-1. A população adaptada, recolhida no final do CSTR (POP), apresentou uma melhoria na fermentação do HSSL (60 %), quando comparada com a estirpe original (PAR). Após esta adaptação, a concentração máxima de etanol obtida foi de 6.93 g.L-1, com um rendimento de 0.26 g.g-1. POP possuía também a capacidade de metabolizar, possivelmente por ativação de vias oxidativas, compostos derivados da lenhina e taninos dissolvidos no HSSL, conhecidos inibidores microbianos. Por fim, verificou-se também que a pré-cultura da levedura em 60 % de HSSL fez com que a estirpe PAR melhorasse o processo fermentativo em HSSL, em comparação com o ensaio sem pré-cultura em HSSL. No entanto, no caso da estirpe POP, o seu metabolismo foi redirecionado para a metabolização dos inibidores sendo que a produção de etanol decresceu.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interest for environmental fate assessment of chiral pharmaceuticals is increasing and enantioselective analytical methods are mandatory. This study presents an enantioselective analytical method for the quantification of seven pairs of enantiomers of pharmaceuticals and a pair of a metabolite. The selected chiral pharmaceuticals belong to three different therapeutic classes, namely selective serotonin reuptake inhibitors (venlafaxine, fluoxetine and its metabolite norfluoxetine), beta-blockers (alprenolol, bisoprolol, metoprolol, propranolol) and a beta2-adrenergic agonist (salbutamol). The analytical method was based on solid phase extraction followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser. Briefly, Oasis® MCX cartridges were used to preconcentrate 250 mL of water samples and the reconstituted extracts were analysed with a Chirobiotic™ V under reversed mode. The effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor (AGS-SBR) was used to validate the method. Linearity (r2 > 0.99), selectivity and sensitivity were achieved in the range of 20–400 ng L−1 for all enantiomers, except for norfluoxetine enantiomers which range covered 30–400 ng L−1. The method detection limits were between 0.65 and 11.5 ng L−1 and the method quantification limits were between 1.98 and 19.7 ng L−1. The identity of all enantiomers was confirmed using two MS/MS transitions and its ion ratios, according to European Commission Decision 2002/657/EC. This method was successfully applied to evaluate effluents of wastewater treatment plants (WWTP) in Portugal. Venlafaxine and fluoxetine were quantified as non-racemic mixtures (enantiomeric fraction ≠ 0.5). The enantioselective validated method was able to monitor chiral pharmaceuticals in WWTP effluents and has potential to assess the enantioselective biodegradation in bioreactors. Further application in environmental matrices as surface and estuarine waters can be exploited.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invertase was adsorbed onto micro-porous acid-activated montmorillonite clay (K-10) by two procedures, namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, surface area measurements and 27Al NMR. XRD measurements revealed an expansion of clay layers due to immobilization which suggests that intercalation had taken place. Surface area measurements also support this observation. 27Al NMR showed that interaction of enzyme with tetrahedral and octahedral Al changes with the immobilization procedure. Sucrose hydrolysis was performed in a batch reactor. The immobilized enzymes showed enhanced pH and thermal stabilities. Optimum pH and temperature were found to increase upon immobilization. The effectiveness factor (η) and Michaelis constant (Km) suggest that diffusional resistances play a major role in the reaction. The immobilized invertase could be stored in buffer of pH 5 and 6 at 5 °C without any significant loss in activity for 20 days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invertase was immobilised on microporous montmorillonite K-10 via adsorption and covalent binding. The immobilised enzymes were tested for sucrose hydrolysis activity in a batch reactor. Km for immobilised systems was greater than free enzyme. The immobilised forms could be reused for 15 continuous cycles without any loss in activity. After 25 cycles, 85% initial activity was retained. A study on leaching of enzymes showed that 100% enzyme was retained even after 15 cycles of reuse. Leaching increased with reaction temperature. Covalent binding resisted leaching even at temperatures of 70 °C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effective solids-liquid separation is the basic concept of any wastewater treatment system. Biological treatment methods involve microorganisms for the treatment of wastewater. Conventional activated sludge process (ASP) poses the problem of poor settleability and hence require a large footprint. Biogranulation is an effective biotechnological process which can overcome the drawbacks of conventional ASP to a great extent. Aerobic granulation represents an innovative cell immobilization strategy in biological wastewater treatment. Aerobic granules are selfimmobilized microbial aggregates that are cultivated in sequencing batch reactors (SBRs). Aerobic granules have several advantages over conventional activated sludge flocs such as a dense and compact microbial structure, good settleability and high biomass retention. For cells in a culture to aggregate, a number of conditions have to be satisfied. Hence aerobic granulation is affected by many operating parameters. The organic loading rate (OLR) helps to enrich different bacterial species and to influence the size and settling ability of granules. Hence, OLR was argued as an influencing parameter by helping to enrich different bacterial species and to influence the size and settling ability of granules. Hydrodynamic shear force, caused by aeration and measured as superficial upflow air velocity (SUAV), has a strong influence and hence it is used to control the granulation process. Settling time (ST) and volume exchange ratio (VER) are also two key influencing factors, which can be considered as selection pressures responsible for aerobic granulation based on the concept of minimal settling velocity. Hence, these four parameters - OLR, SUAV, ST and VER- were selected as major influencing parametersfor the present study. Influence of these four parameters on aerobic granulation was investigated in this work

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological nutrient removal has been studied and applied for decades in order to remove nitrogen and phosphorus from wastewater. However, more anthropogenic uses and the continued demand for water have forced the facilities to operate at their maximum capacity. Therefore, the goal of this thesis is to obtain more compact systems for nutrient removal from domestic wastewater. In this sense, optimization and long-term stabilization of high volume exchange ratios reactors, treating higher volumes of wastewater, have been investigated. With the same target, aerobic granular sludge was proposed as a reliable alternative to reduce space and increase loading rates in treatment plants. However, the low organic loading rate from low-strength influents (less than 1 Kg COD•m-3d-1) results in slower granular formation and a longer time to reach a steady state. Because of that, different methodologies and operational conditions were investigated in order to enhance granulation and nutrient removal from domestic wastewater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decades, the awareness of environmental issues has increased in society considerably. There is an increasing need to improve the effluent quality of domestic wastewater treatment processes. This thesis describes the application of the Sequencing Batch Reactor (SBR) technology for Biological Nutrient Removal (BNR) from the wastewater. In particular, the work presented evolves from the nitrogen removal to the biological nutrient removal (i.e. nitrogen plus phosphorous removal) with special attention to the operational strategy design, the identification of possible reactor cycle controls or the influent composition related to the process efficiency. In such sense, also the use of ethanol as an external carbon (when low influent Carbon:Phosphorus (C:P) or Carbon:Nitrogen (C:N) ratios are presented) are studied as an alternative to maintain the BNR efficiency.