982 resultados para Bacterial-based
Resumo:
DNA amplification techniques are being used increasingly in clinical laboratories to confirm the identity of medically important bacteria. A PCR-based identification method has been in use in our centre for 10 years for Burkholderia pseudomallei and was used to confirm the identity of bacteria isolated from cases of melioidosis in Ceará since 2003. This particular method has been used as a reference standard for less discriminatory methods. In this study we evaluated three PCR-based methods of B. pseudomallei identification and used DNA sequencing to resolve discrepancies between PCR-based results and phenotypic identification methods. The established semi-nested PCR protocol for B. pseudomallei 16-23s spacer region produced a consistent negative result for one of our 100 test isolates (BCC #99), but correctly identified all 71 other B. pseudomallei isolates tested. Anomalous sequence variation was detected at the inner, reverse primer binding site for this method. PCR methods were developed for detection of two other B. pseudomallei bacterial metabolic genes. The conventional lpxO PCR protocol had a sensitivity of 0.89 and a specificity of 1.00, while a real-time lpxO protocol performed even better with sensitivity and specificity of 1.00, and 1.00. This method identified all B. pseudomallei isolates including the PCR-negative discrepant isolate. The phaC PCR protocol detected the gene in all B. pseudomallei and all but three B. cepacia isolates, making this method unsuitable for PCR-based identification of B. pseudomallei. This experience with PCR-based B. pseudomallei identification methods indicates that single PCR targets should be used with caution for identification of these bacteria, and need to be interpreted alongside phenotypic and alternative molecular methods such as gene sequencing.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented in partial fulfilment of the Requirements for the Degree of Master in Biotechnology
Resumo:
Using a green methodology, 17 different poly(2-oxazolines) were synthesized starting from four different oxazoline monomers. The polymerization reactions were conducted in supercritical carbon dioxide under a cationic ring-opening polymerization (CROP) mechanism using boron trifluoride diethyl etherate as the catalyst. The obtained living polymers were then end-capped with different types of amines, in order to confer them antimicrobial activity. For comparison, four polyoxazolines were end-capped with water, and by their hydrolysis the linear poly(ethyleneimine) (LPEI) was also produced. After functionalization the obtained polymers were isolated, purified and characterized by standard techniques (FT-IR, NMR, MALDI-TOF and GPC). The synthesized poly(2-oxazolines) revealed an unusual intrinsic blue photoluminescence. High concentration of carbonyl groups in the polymer backbone is appointed as a key structural factor for the presence of fluorescence and enlarges polyoxazolines’ potential applications. Microbiological assays were also performed in order to evaluate their antimicrobial profile against gram-positive Staphylococcus aureus NCTC8325-4 and gram-negative Escherichia coli AB1157 strains, two well known and difficult to control pathogens. The minimum inhibitory concentrations (MIC)s and killing rates of three synthesized polymers against both strains were determined. The end-capping with N,N-dimethyldodecylamine of living poly(2- methyl-2-oxazoline) and poly(bisoxazoline) led to materials with higher MIC values but fast killing rates (less than 5 minutes to achieve 100% killing for both bacterial species) than LPEI, a polymer which had a lower MIC value, but took a longer time to kill both E.coli and S.aureus cells. LPEI achieved 100% killing after 45 minutes in contact with E. coli and after 4 hours in contact with S.aureus. Such huge differences in the biocidal behavior of the different polymers can possibly underlie different mechanisms of action. In the future, studies to elucidate the obtained data will be performed to better understand the killing mechanisms of the polymers through the use of microbial cell biology techniques.
Resumo:
AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.
Resumo:
INTRODUCTION: The purpose of this study was to establish the late onset sepsis (LOS) rate of our service, characterize the intestinal microbiota and evaluate a possible association between gut flora and sepsis in surgical infants who were receiving parenteral nutrition (PN). METHODS: Surveillance cultures of the gut were taken at the start of PN and thereafter once a week. Specimens for blood culture were collected based on clinical criteria established by the medical staff. The central venous catheter (CVC) tip was removed under aseptic conditions. Standard laboratory methods were used to identify the microorganisms that grew on cultures of gut, blood and CVC tip. RESULTS: 74 very low birth weight infants were analyzed. All the infants were receiving PN and antibiotics when the gut culture was started. In total, 21 (28.4%) infants experienced 28 episodes of LOS with no identified source. Coagulase negative staphylococci were the most common bacteria identified, both in the intestine (74.2%) and blood (67.8%). All infections occurred in patients who received PN through a central venous catheter. Six infants experienced episodes of microbial translocation. CONCLUSIONS: In this study, LOS was the most frequent episode in neonates receiving parenteral nutrition who had been submitted to surgery; 28.6% of this infection was probably a gut-derived phenomenon and requires novel strategies for prevention.
Resumo:
Bacteria are central to human health and disease, but existing tools to edit microbial consortia are limited. For example, broad-spectrum antibiotics are unable to precisely manipulate bacterial communities. Bacteriophages can provide highly specific targeting of bacteria, but assembling well-defined phage cocktails solely with natural phages can be a time-, labor- and cost-intensive process. Here, we present a synthetic biology strategy to modulate phage host ranges by engineering phage genomes in Saccharomyces cerevisiae. We used this technology to redirect Escherichia coli phage scaffolds to target pathogenic Yersinia and Klebsiella bacteria, and conversely, Klebsiella phage scaffolds to target E. coli by modular swapping of phage tail components. The synthetic phages achieved efficient killing of their new target bacteria and were used to selectively remove bacteria from multi-species bacterial communities with cocktails based on common viral scaffolds. We envision this approach accelerating phage biology studies and enabling new technologies for bacterial population editing.
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia de Materiais)
Resumo:
Bacterial cellulose (BC) films from two distinct sources (obtained by static culture with Gluconacetobacter xylinus ATCC 53582 (BC1) and from a commercial source (BC2)) were modified by bovine lactoferrin (bLF) adsorption. The functionalized films (BC+bLF) were assessed as edible antimicrobial packaging, for use in direct contact with highly perishable foods, specifically fresh sausage as a model of meat products. BC+bLF films and sausage casings were characterized regarding their water vapour permeability (WVP), mechanical properties, and bactericidal efficiency against two food pathogens, Escherichia coli and Staphylococcus aureus. Considering their edibility, an in vitro gastrointestinal tract model was used to study the changes occurring in the BC films during passage through the gastrointestinal tract. Moreover, the cytotoxicity of the BC films against 3T3 mouse embryo fibroblasts was evaluated. BC1 and BC2 showed equivalent density, WVP and maximum tensile strength. The percentage of bactericidal efficiency of BC1 and BC2 with adsorbed bLF (BC1+bLF and BC2+bLF, respectively) in the standalone films and in inoculated fresh sausages, was similar against E. coli (mean reduction 69 % in the films per se versus 94 % in the sausages) and S. aureus (mean reduction 97 % in the films per se versus 36 % in the case sausages). Moreover, the BC1+bLF and BC2+bLF films significantly hindered the specific growth rate of both bacteria. Finally, no relevant cytotoxicity against 3T3 fibroblasts was found for the films before and after the simulated digestion. BC films with adsorbed bLF may constitute an approach in the development of bio-based edible antimicrobial packaging systems.
Resumo:
Dissertação de mestrado em Bioengineering
Resumo:
Tese de Doutoramento em Engenharia Biomédica.
Resumo:
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.
Resumo:
The introduction of culture-independent molecular screening techniques, especially based on 16S rRNA gene sequences, has allowed microbiologists to examine a facet of microbial diversity not necessarily reflected by the results of culturing studies. The bacterial community structure was studied for a pesticide-contaminated site that was subsequently remediated using an efficient degradative strain Arthrobacter protophormiae RKJ100. The efficiency of the bioremediation process was assessed by monitoring the depletion of the pollutant, and the effect of addition of an exogenous strain on the existing soil community structure was determined using molecular techniques. The 16S rRNA gene pool amplified from the soil metagenome was cloned and restriction fragment length polymorphism studies revealed 46 different phylotypes on the basis of similar banding patterns. Sequencing of representative clones of each phylotype showed that the community structure of the pesticide-contaminated soil was mainly constituted by Proteobacteria and Actinomycetes. Terminal restriction fragment length polymorphism analysis showed only nonsignificant changes in community structure during the process of bioremediation. Immobilized cells of strain RKJ100 enhanced pollutant degradation but seemed to have no detectable effects on the existing bacterial community structure.
Resumo:
The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.
Resumo:
Rapport de synthèse: Enjeux de la recherche : La pneumonie communautaire chez l'enfant est un problème de santé publique considérable. Elle est responsable de 2 millions de mort par année, 70% survenant dans les pays en voie de développement. Sous nos latitudes son incidence est de 40/1000 enfants par année, ce qui représente une morbidité importante. Deux difficultés surviennent lorsqu'on cherche à diagnostiquer une pneumonie. La première est de distinguer une pneumonie bactérienne d'une virale, particulièrement chez les petits enfants où les infections virales des voies respiratoires inférieures sont fréquentes. L'OMS a définit la pneumonie selon des critères exclusivement cliniques et une étude effectuée à Lausanne en 2000 a montré que ces critères peuvent être utilisés dans nos contrées. La seconde difficulté est de définir l'agent causal de la pneumonie, ceci pour plusieurs raisons : L'aspiration endotrachéale, seul examen fiable, ne peut être obtenue de routine chez l'enfant vu son caractère invasif, la culture des secrétions nasopharyngées reflète la flore physiologique de la sphère ORL et une bactériémie n'est présente que dans moins de 10% des pneumonies. L'étiologie de la pneumonie reste souvent inconnue, et de ce fait plusieurs enfants reçoivent des antibiotiques pour une infection non bactérienne ce qui contribue au développement de résistances. L'objectif de cette étude était d'effectuer une recherche extensive de l'agent causal de la pneumonie et de déterminer quels facteurs pourraient aider le clinicien à différencier une pneumonie virale de bactérienne, en corrélant l'étiologie avec la sévérité clinique et les marqueurs de l'inflammation. Contexte de la recherche : II s'agissait d'une étude prospective, multicentrique, incluant les enfants âgés de 2 mois à 5 ans hospitalisés pour une pneumonie, selon les critères de l'OMS, dans le service de pédiatrie de Lausanne et Genève entre mars 2003 et Décembre 2005, avant l'implantation de la vaccination antipneumococcique de routine. Chaque enfant, en plus des examens usuels, bénéficiait d'une recherche étiologique extensive : Culture virale et bactérienne, PCR (Mycoplasma Pneumoniae, Chlamydia Pneumoniae, Virus Influenza A et B, RSV A et B, Rhinovirus, Parainfluenza 1-3, enterovirus, human metapneumovirus, coronavirus OC43, E229 ; et NL 63) et détection d'AG viraux dans les sécrétions nasopharyngées ; sérologies virales et bactériennes à l'entrée et 3 semaines après la sortie (AG Influenza A et B, Parainfluenza 1,2 et 3, RSV, Adenovirus, M.Pneumoniae et S.Pneumoniae). Conclusions : Un agent pathogène a été découvert chez 86% des 99 patients retenus confirmant le fait que plus la recherche étiologique est étendue plus le pourcentage d'agent causal trouvé est élevé. Une infection bactérienne a été découverte chez 53% des patients dont 45% avaient une infection à S. Pneumoniae confirmant l'importance d'une vaccination antipneumococcique de routine. La déshydratation et les marqueurs de l'inflammation tels que la C-Reactive Protein et la Procalcitonine étaient significativement plus élevés dans les pneumonies bactériennes. Aucune corrélation n'a été trouvée entre le degré de sévérité de la pneumonie et l'étiologie. L'étude a confirmé la haute prévalence d'infections virales (67%) et de co-infection (33%) dans la pneumonie de l'enfant sans que l'on connaisse le rôle réel du virus dans la pathogenèse de la pneumonie. Perspectives : d'autres études à la suite de celle-ci devraient être effectuées en incluant les patients ambulatoires afin de déterminer, avec un collectif plus large de patient, une éventuelle corrélation entre sévérité clinique et étiologie. Abstract : Community-acquired pneumonia (CAP) is a major cause of death in developing countries and of morbidity in developed countries. The objective of the study was to define the causative agents among children hospitalized for CAP defined by WHO guidelines and to correlate etiology with clinical severity and surrogate markers. Investigations included an extensive etiological workup. A potential causative agent was detected in 86% of the 99 enrolled patients, with evidence of bacterial (53%), viral (67%), and mixed (33%) infections. Streptococcus pneumoniae was accounted for in 46% of CAP. Dehydration was the only clinical sign associated with bacterial pneumonia. CRP and PCT were significantly higher in bacterial infections. Increasing the number of diagnostic tests identifies potential causes of CAP in up to 86% of children, indicating a high prevalence of viruses and frequent co-infections. The high proportion of pneumococcal infections re-emphasizes the importance of pneumococcal immunization.