884 resultados para BaMoO4 powders
Resumo:
Densification characteristics of amorphous ZrO2-40 mol% Al2O3 powder with 3 to 15 mu m nominal particle size range, produced by spray pyrolysis, have been studied by conducting hot pressing experiments at 573, 723 and 873 K with uniaxial pressures of 250, 500 and 750 MPa. Most of the increase in relative density from the starting value of similar to 40% occurred during loading up to the desired pressure. The increments in density during 1 hour constant pressure dwells were less than 4% at all temperatures and pressure. Inter-particle bonding was not observed at 573 K. Correlation between the results with a viscous sintering model for hot pressing is not satisfactory for describing the behavior as normal viscous sintering.
Resumo:
We have demonstrated a simple, scalable and inexpensive method based on microwave plasma for synthesizing 5 to 10 g/h of nanomaterials. Luminescent nano silicon particles were synthesized by homogenous nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor. The synthesized nano silicon and titanium nitride powders were characterized by XRD, XPS, TEM, SEM and BET. The characterization techniques indicated that the synthesized powders were indeed crystalline nanomaterials.
Resumo:
In recent years, there has been significant effort in the synthesis of nanocrystalline spinel ferrites due to their unique properties. Among them, zinc ferrite has been widely investigated for countless applications. As traditional ferrite synthesis methods are energy- and time-intensive, there is need for a resource-effective process that can prepare ferrites quickly and efficiently without compromising material quality. We report on a novel microwave-assisted soft-chemical synthesis technique in the liquid medium for synthesis of ZnFe2O4 powder below 100 °C, within 5 min. The use of β-diketonate precursors, featuring direct metal-to-oxygen bonds in their molecular structure, not only reduces process temperature and duration sharply, but also leads to water-soluble and non-toxic by-products. As synthesized powder is annealed at 300 °C for 2 hrs in a conventional anneal (CA) schedule. An alternative procedure, a 2-min rapid anneal at 300 °C (RA) is shown to be sufficient to crystallize the ferrite particles, which show a saturation magnetization (MS) of 38 emu/g, compared with 39 emu/g for a 2-hr CA. This signifies that our process is efficient enough to reduce energy consumption by ∼85% just by altering the anneal scheme. Recognizing the criticality of anneal process to the energy budget, a more energy-efficient variation of the reaction process was developed, which obviates the need for post-synthesis annealing altogether. It is shown that the process also can be employed to deposit crystalline thin films of ferrites.
Resumo:
Zinc substituted cobalt ferrite powders {Co(1-x)ZnxFe2O4} (0.0 <= x <= 0.5) were prepared by the solution combustion method. The structural, morphological, magnetic and electrical properties of as synthesized samples were studied. Powder X-ray diffraction patterns reveals single phase, cubic spinel structure with space group No. Fd (3) over barm (227). As zinc concentration increases, the lattice constant increases and the crystallite size decreases. The minimum crystallite size of similar to 12 nm was observed for x = 0.5 composition. The synthesized ferrite compounds show ferrimagnetic behavior, with coercivity value of 10779 Oe (Hard ferrite) at 20 K and 1298 Oe (soft ferrite) at room temperature (RT). The maximum saturation magnetization recorded for the Co0.5Zn0.5Fe2O4 composition was 99.78 emu g(-1) and 63.83 emu g(-1) at 20 K and RT respectively. The dielectric parameters such as dielectric constant, loss tangent and AC conductivity were determined as a function of frequency at RT. The magnetic and dielectric properties of the samples illustrates that the materials were quite useful for the fabrication of nanoelectronic devices. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Fine powders comprising nanocrystallites of Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) were synthesized via oxalate precursor method, which facilitated to obtain homogenous and large grain sized ceramics at a lower sintering temperature. The compacted powders were sintered at various temperatures in the range of 1200 degrees C-1500 degrees C for an optimized duration of 10 h. Interestingly the one that was sintered at 1450 degrees C/10 h exhibited well resolved Morphotrophic Phase Boundary. The average grain size associated with this sample was 30 mu m accompanied by higher domain density mostly with 90 degrees twinning. These were believed to have significant contribution towards obtaining large strain of about 0.2% and piezoelectric coefficient as high as 563 pC/N. The maximum force that was generated by BCZT ceramic (having 30 mu m grain size) was found to be 161 MPa, which is much higher than that of known actuator materials such as PZT (40MPa) and NKN-5-LT (7 MPa). (C) 2014 AIP Publishing LLC.
Resumo:
Mechanochemically activated reactants were found to facilitate the synthesis of fine powders comprising 200-400 nm range crystallites of BaBi4Ti4O15 at a significantly lower temperature (700 A degrees C) than that of solid-state reaction route. Reactants (CaCO3, Bi2O3 and TiO2) in stoichiometric ratio were ball milled for 48 h to obtain homogeneous mixture. The evolution of the BaBi4Ti4O15 phase was systematically followed using X-ray powder diffraction (XRD) technique. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to probe its structural and microstructural details. The electron diffraction studies established the presence of correlated octahedral rotations and associated long-range polar ordering. High-resolution TEM imaging nevertheless revealed structural inhomogeneities leading to intergrowth defects. Dense BaBi4Ti4O15 ceramics with an average grain size of 0.9 mu m were fabricated using mechanochemically assisted synthesized powders at relatively low temperature (1000 A degrees C). The effect of grain size on the dielectric and relaxor behaviour of BaBi4Ti4O15 ceramics was investigated. Fine-grained ceramics (average grain size similar to 0.9 mu m) showed higher diffusion in phase transition, lower temperature of phase transition, lower Vogel-Fulcher freezing temperature and higher activation energy for the polarization reversal than those for coarse-grained ceramics (average grain size similar to 7 mu m) fabricated via the conventional solid-state reaction route.
Resumo:
Eu3+-activated BaMoO4 phosphors were synthesized by the nitrate citrate gel combustion method. The Rietveld refinement analysis confirmed that all the compounds were crystallized in the scheelite-type tetragonal structure with I4(1)/a (No. 88) space group. Photoluminescence (PL) spectra of BaMoO4 phosphor reveals broad emission peaks at 465 and 605 nm, whereas the Eu3+-activated BaMoO4 phosphors show intense 615 nm (D-5(0) -> F-7(2)) emission peak. Judd-Ofelt theory was applied to evaluate the intensity parameters (Omega(2), Omega(4)) of Eu3+-activated BaMoO4 phosphors. The transition probabilities (A(T)), radiative lifetime (tau(rad)), branching ratio (beta), stimulated emission cross-section (sigma(e)), gain bandwidth (sigma(e) x Delta lambda(eff)) and optical gain (sigma(e) x tau(rad)) were investigated by using the intensity parameters. CIE color coordinates confirmed that the BaMoO4 and Eu3+-activated BaMoO4 phosphors exhibit white and red luminescence, respectively. The obtained results revealed that the present phosphors can be a potential candidate for red lasers and white LEDs applications. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Nano-sized TiNi powder with an average size of 50nm was consolidated using spark plasma sintering (SPS) at 800 °C for 5min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H2O2) solution at 60 °C followed by heat treatment at 400 °C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi. © IOP Publishing Ltd.
Resumo:
The microstructures and the characteristics of water-atomized, nitrogen gas-atomized Al powders and ultrasonic argon gas-atomized Al-Li alloy powder were investigated by means of metallography, SEM, Auger electron spectroscopy and X-ray diffraction techniques. Rapidly solidified powders were explosively consolidated into different sized cylinders under various explosive parameters. The explosively consolidated compacts have been tested and analysed for density microhardness, retention of rapidly solidified microstructures, interparticle bonding, fractography and lattice distortion. It is shown that the explosive consolidation technique is an effective method for compacting rapidly solidified powders. The characteristics of surface layers play a very important role in determining the effectiveness of the joints sintered, and the Al-Li alloy explosive compacts present an abnormal softening appearance compared to the original powder.
Resumo:
In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.
Resumo:
Polycrystalline Zn1-xNixO diluted magnetic semiconductors have been successfully synthesized by an auto-combustion method. X-ray diffraction measurements indicated that the 5 at% Ni-cloped ZnO had the pure wurtzite structure. Refinements of cell parameters from powder diffraction data revealed that the cell parameters of Zn0.95Ni0.05O were a little bit larger than ZnO. Transmission electron microscopy observation showed that the as-synthesized powders were of the size similar to 60 nm. Magnetic investigations showed that the nanocystalline Zn0.95Ni0.05O possessed room temperature ferromagnetisin with the saturation magnetic moment of 0.1 emu/g (0.29 mu(B)/Ni2+). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nanocrystalline Zn0.95 - xNi0.05AlxO (x = 0.01, 0.02, 0.05 and 0.10) diluted magnetic semiconductors have been synthesized by an auto-combustion method. X-ray diffraction measurements indicate that all Al-doped Zn0.95Ni0.05O samples have the pure wurtzite structure. Transmission electron microscope analyses show that the as-synthesized powders are of the size 40 - 45 nm. High-resolution transmission electron microscope, energy dispersive spectrometer and X-ray photoemission spectroscope analyses indicate that Ni2+ and Al3+ uniformly substitute Zn2+ in the wurtzite structure without forming any secondary phases. The Al doping concentration dependences of cell parameters (a and c), resistance and the ratio of green emission to UV emission have the similar trends. (c) 2007 Elsevier B.V. All rights reserved.