999 resultados para BT
Resumo:
The economic benefits of Genetically Modified (GM) crops in developing countries have been well documented, but little research has been undertaken to date on the impacts of GM adoption on household livelihoods. The research reported here aimed to assess the livelihood impacts of the adoption of Bt cotton in South Africa., and involved 100 interviews of resource-poor farmers growing Bt cotton in Makhathini Flats, South Africa. Some 88% of respondents reported a higher income from Bt compared to non-Bt varieties previously grown by them, and this higher income was used primarily for greater education of their children (76%), more investment in growing cotton (46%), repaying debt (28%), investment in other crops (20%) and spending money on themselves. Some 89% had increased their asset base due to Bt cotton, primarily by increasing their cultivable land. These benefits of Bt adoption appeared widespread regardless of gender or farm size.
Resumo:
The present paper explores the 'farmer' effect in economic advantages often claimed for Bt cotton varieties (those with the endotoxin gene from Bacillus thuringiensis conferring resistance to some insect pests) compared to non-Bt varieties. Critics claim that much of the yield advantage of Bt cotton could be due to the fact that farmers adopting the technology are in a better position to provide inputs and management and so much of any claimed Bt advantage is an artefact rather than reflecting a real advantage of the variety per se. The present paper provides an in-depth analysis of 63 non-adopting and 94 adopting households of Bt cotton in Jalgaon, Maharashtra State, India, spanning the seasons 2002 and 2003. Results suggest that Bt adopters are indeed different from non-adopters in a number of ways. Adopters appear to specialize more on cotton (at least in terms of the land area they devote to the crop), spend more money on irrigation and grow well-performing non-Bt varieties of cotton (Bunny). Taking gross margin as the basis for comparison, Bt plots had 2.5 times the gross margin of non-Bt plots in both seasons. If only adopters are considered then the gross margin advantage of Bt plots reduces to 1.6 times that of non-Bt plots. This is still a significant advantage and could well explain the popularity of Bt in Maharashtra. However, it is clear that great care needs to be taken with such comparative studies.
Resumo:
Critics of genetically modified (GM) crops often contend that their introduction enhances the gap between rich and poor farmers, as the former group are in the best position to afford the expensive seed as well as provide other inputs such as fertilizer and irrigation. The research reported in this paper explores this issue with regard to Bt cotton (cotton with the endotoxtin gene from Bacillus thuringiensis conferring resistance to some insect pests) in Jalgaon, Maharashtra State, India, spanning the 2002 and 2003 seasons. Questionnaire–based survey results from 63 non–adopting and 94 adopting households of Bt cotton were analyzed, spanning 137 Bt cotton plots and 95 non–Bt cotton plots of both Bt adopters and non–adopters. For these households, cotton income accounted for 85 to 88% of total household income, and is thus of vital importance. Results suggest that in 2003 Bt adopting households have significantly more income from cotton than do non–adopting households (Rp 66,872 versus Rp 46,351) but inequality in cotton income, measured with the Gini coefficient (G), was greater amongst non–adopters than adopters. While Bt adopters had greater acreage of cotton in 2003 (9.92 acres versus 7.42 for non–adopters), the respective values of G were comparable. The main reason for the lessening of inequality amongst adopters would appear to be the consistency in the performance of Bt cotton along with the preferred non–Bt cultivar of Bt adopters—Bunny. Taking gross margin as the basis for comparison, Bt plots had 2.5 times the gross margin of non–Bt plots of non–adopters, while the advantage of Bt plots over non–Bt plots of adopters was 1.6 times. Measured in terms of the Gini coefficient of gross margin/acre it was apparent that inequality was lessened with the adoption of Bunny (G = 0.47) and Bt (G = 0.3) relative to all other non–Bt plots (G = 0.63). Hence the issue of equality needs to be seen both in terms of differences between adopters and non–adopters as well as within each of the groups.
A wind-tunnel study of flow distortion at a meteorological sensor on top of the BT Tower, London, UK
Resumo:
High quality wind measurements in cities are needed for numerous applications including wind engineering. Such data-sets are rare and measurement platforms may not be optimal for meteorological observations. Two years' wind data were collected on the BT Tower, London, UK, showing an upward deflection on average for all wind directions. Wind tunnel simulations were performed to investigate flow distortion around two scale models of the Tower. Using a 1:160 scale model it was shown that the Tower causes a small deflection (ca. 0.5°) compared to the lattice on top on which the instruments were placed (ca. 0–4°). These deflections may have been underestimated due to wind tunnel blockage. Using a 1:40 model, the observed flow pattern was consistent with streamwise vortex pairs shed from the upstream lattice edge. Correction factors were derived for different wind directions and reduced deflection in the full-scale data-set by <3°. Instrumental tilt caused a sinusoidal variation in deflection of ca. 2°. The residual deflection (ca. 3°) was attributed to the Tower itself. Correction of the wind-speeds was small (average 1%) therefore it was deduced that flow distortion does not significantly affect the measured wind-speeds and the wind climate statistics are reliable.
Resumo:
This paper describes the results of research conducted in the Makhathini region, Kwazulu Natal, Republic of South Africa, designed to explore the economic benefits of the adoption of Bt cotton for smallholders. Results suggest that Bt cotton had higher yields than non-Bt varieties and generated greater revenue. Seed costs for Bt cotton were double those of non-Bt, although pesticide costs were lower. On balance, the gross margins (revenue - costs) of Bt growers were higher than those of non-Bt growers.
Resumo:
This paper describes the method and findings of a survey designed to explore the economic benefits of the adoption of Bacillus thuringiensis (Bt) cotton for smallholder farmers in the Republic of South Africa. The study found reason for cautious optimism in that the Bt variety generally resulted in a per hectare increase in yields and value of output with a reduction in pesticide costs, which outweighed the increase in seed costs to give a substantial increase in gross margins. Thus, these preliminary results suggest that Bt cotton is good for smallholder cotton farmers and the environment.
Resumo:
This paper describes the method and findings of the first independent survey of smallholder farmers in the Republic of South Africa designed to explore the economic benefits of their adoption of Bt cotton. The study found that the Bt variety generally resulted in a per hectare increase in yields, value of output and reduction of pesticide costs which outweighed the increase in seed costs to give a substantial increase in gross margins. There are several surveys being carried out at the moment on different aspects of the Makhathini experience. The Monitor will be reporting on their results as these become available.
Resumo:
The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to pesticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered (GE) insect resistant crops could mitigate many of the negative side effects of pesticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro-ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if non-susceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers’ disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible longterm ecological trophic interactions of employing this technology.
Resumo:
Transgenic crops that contain Cry genes from Bacillus thuringiensis (Bt) have been adopted by farmers over the last 17 years. Unlike traditional broad spectrum chemical insecticides, Bt's toxicity spectrum is relatively narrow and selective, which may indirectly benefit secondary insects that may become important pests. The economic damage caused by the rise of secondary pests could offset some or all of the benefits associated with the use of Bt varieties. We develop a bioeconomic model to analyze the interactions between primary and secondary insect populations and the impact of different management options on insecticide use and economic impact over time. Results indicate that some of the benefits associated with the adoption of genetically engineered insect resistant crops may be eroded when taking into account ecological dynamics. It is suggested that secondary pests could easily become key insect pests requiring additional measures - such as insecticide applications or stacked traits – to keep their populations under the economic threshold.
Resumo:
O objetivo deste estudo foi avaliar a qualidade fisiológica das sementes de milho-doce em função do teor de água na colheita e da temperatura de secagem em espiga. O experimento foi instalado na área experimental da FCA/Unesp, Botucatu-SP. Utilizou-se a cultivar BR 400 (bt) 'Super doce'. O delineamento experimental empregado foi o de blocos ao acaso com seis repetições, constituindo os tratamentos as épocas de colheitas. As colheitas das espigas foram iniciadas após a maturidade fisiológica; após despalhadas e divididas em duas porções, as espigas foram submetidas a secagem em estufas com circulação forçada nas temperaturas de 30 e 40ºC. Foi utilizada uma testemunha com sementes secadas no campo com 10,1% de teor de água. Foram determinados os teores de água das sementes, inicial e após a secagem, de todas as colheitas. Após a secagem, as espigas foram debulhadas manualmente, as sementes acondicionadas em saco de papel e armazenadas em condições ambientais de laboratório. As avaliações da qualidade fisiológica das sementes (emergência de plântulas no campo, índice de velocidade de emergência, matéria seca de plântulas, germinação, vigor-primeira contagem do teste de germinação, envelhecimento acelerado, teste de frio, condutividade elétrica e teores de Ca, Mg, K e Na lixiviados na solução do teste de condutividade elétrica) foram realizadas antes e após seis meses de armazenamento. As sementes de milho-doce cultivar BR 400 (bt), com teor de água igual ou menor do que 35%, podem ser submetidas à secagem em espiga a temperatura de 30 ou 40ºC, sem perdas significativas em sua qualidade fisiológica.