978 resultados para BOILING NUCLEATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc-10 and 20 wt pct Pb alloys have been rapidly solidified by melt spinning to obtain a very fine scale dispersion of nanometer-sized Pb particles embedded in Zn matrix. The microstructure and crystallography of the Pb particles have been studied using transmission electron microscopy (TEM). Each embedded Pb particle is a single crystal, with a truncated hexagonal biprism shape with the 6/mmm Zn matrix point group symmetry surrounded by and { 0001 á },\text { \text10[`\text1] \text0 },\text and { \text10[`\text1] \text1 }0001 1010 and 1011 facets. The Pb particles solidify with a well-defined orientation relationship with the Zn matrix of ( 0001 )Zn ||(111)Pb\text and\text [ \text11[`\text2] \text0 ]Zn| ||[ 1[`1] 0 ]Pb 0001Zn(111)Pb and 1120Zn110Pb . The melting and solidification behavior of the Pb particle have been studied using differential scanning calorimetry (DSC). The Pb particles solidify with an undercooling of approximately 30 K, by heterogeneous nucleation on the {0001} facets of the surrounding Zn matrix, with an apparent contact angle of 23 deg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenological theory of hemispherical growth in the context of phase formation with more than one component is presented. The model discusses in a unified manner both instantaneous and progressive nucleation (at the substrate) as well as arbitrary growth rates (e.g. constant and diffusion controlled growth rates). A generalized version of Avrami ansatz (a mean field description) is used to tackle the ''overlap'' aspects arising from the growing multicentres of the many components involved, observing that the nucleation is confined to the substrate plane only. The time evolution of the total extent of macrogrowth as well as those of the individual components are discussed explicitly for the case of two phases. The asymptotic expressions for macrogrowth are derived. Such analysis depicts a saturation limit (i.e. the maximum extent of growth possible) for the slower growing component and its dependence on the kinetic parameters which, in the electrochemical context, can be controlled through potential. The significance of this model in the context of multicomponent alloy deposition and possible future directions for further development are pointed out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed an alternate description of dynamics of nucleation in terms of an extended set of order parameters. The order parameters consist of an ordered set of kth largest clusters, ordered such that k = 1 is the largest cluster in the system, k = 2 is the second largest cluster, and so on. We have derived an analytic expression for the free energy for the kth largest cluster, which is in excellent agreement with the simulated results. At large supersaturation, the free energy barrier for the growth of the kth largest cluster disappears and the nucleation becomes barrierless. The major success of this extended theoretical formalism is that it can clearly explain the observed change in mechanism at large metastability P. Bhimalapuram et al., Phys. Rev. Lett. 98, 206104 (2007)] and the associated dynamical crossover. The classical nucleation theory cannot explain this crossover. The crossover from activated to barrierless nucleation is found to occur at a supersaturation where multiple clusters cross the critical size. We attribute the crossover as the onset of the kinetic spinodal. We have derived an expression for the rate of nucleation in the barrierless regime by modeling growth as diffusion on the free energy surface of the largest cluster. The model reproduces the slower increase in the rate of growth as a function of supersaturation, as observed in experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An energy landscape view of phase separation and nonideality in binary mixtures is developed by exploring their potential energy landscape (PEL) as functions of temperature and composition. We employ molecular dynamics simulations to study a model that promotes structure breaking in the solute-solvent parent binary liquid, at low temperatures. The PEL of the system captures the potential energy distribution of the inherent structures (IS) of the system and is obtained by removing the kinetic energy (including that of intermolecular vibrations). The broader distribution of the inherent structure energy for structure breaking liquid than that of the structure making liquid demonstrates the larger role of entropy in stabilizing the parent liquid of the structure breaking type of binary mixtures. At high temperature, although the parent structure of the structure breaking binary mixture is homogenous, the corresponding inherent structure is found to be always phase separated, with a density pattern that exhibits marked correlation with the energy of its inherent structure. Over a broad range of intermediate inherent structure energy, bicontinuous phase separation prevails with interpenetrating stripes as signatures of spinodal decomposition. At low inherent structure energy, the structure is largely phase separated with one interface where as at high inherent structure energy we find nucleation type growth. Interestingly, at low temperature, the average inherent structure energy (< EIS >) exhibits a drop with temperature which signals the onset of crystallization in one of the phases while the other remains in the liquid state. The nonideal composition dependence of viscosity is anticorrelated with average inherent structure energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order to understand the large numerical discrepancy between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interactions of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for the Lennard-Jones potential, both in two and three dimensions. The value of surface tension and also the free energy difference between the gas and the liquid phase increase significantly and converge only when the range of interaction is extended beyond 6-7 molecular diameters. We find, with the full range of interaction potential, that the surface tension shows only a weak dependence on supersaturation, so the reason for the breakdown of CNT (with simulated values of surface tension and free energy gap) cannot be attributed to the supersaturation dependence of surface tension. This remains an unsettled issue at present because of the use of the value of surface tension obtained at coexistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is argued that the nanometric dispersion of Bi in a Zn matrix is an ideal model system for heterogeneous nucleation experiments. The classical theory of heterogeneous nucleation with a hemispherical cap model is applied to analyse the nucleation data. It is shown that, unlike the results of earlier experiments, the derived site density for catalytic nucleation and contact angle are realistic and strongly suggest the validity of the classical theory. The surface energy between the 0001 plane of Zn and the <10(1)over bar 2> plane of Bi, which constitute the epitaxial nucleation interface, is estimated to be 39 mJ m(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the deposition of aluminium oxide films by low-pressure metalorganic chemical vapour deposition from the complex aluminium acetylacetonate, in the absence of an oxidant gas, has been carried out. Depositions on to Si(100), stainless steel, and TiN-coated cemented carbide are found to be smooth, shiny, and blackish. SIMS, XPS and TEM analyses reveal that films deposited at temperatures as low as 600 degreesC contain small crystallites Of kappa-Al2O3, embedded in an amorphous matrix rich in graphitic carbon. Optical and scanning electron microscopy reveal a surface morphology made up of spherulites that suggests that film growth might involve a melting process. A nucleation and growth mechanism, involving the congruent melting clusters of precursor molecules on the hot substrate surface, is therefore invoked to explain these observations. An effort has been made experimentally to verify this proposed mechanism. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase transformations of Al2O3 and Na2O · 6Al2O3 prepared by the gel route have been investigated for the first time by 27Al MAS NMR spectroscopy in combination with x-ray diffraction. Of particular interest in the study is the kinetics of the γ → α and γ → β transformations, respectively, in these two systems. Analysis of the kinetic data shows the important role of nucleation in both these transformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of phase formation is generalised for any arbitrary time dependence of nucleation and growth rates. Some sources of this time dependence are time-dependent potential inputs, ohmic drop and the ingestion effect. Particular cases, such as potentiostatic and, especially, linear potential sweep, are worked out for the two limiting cases of nucleation, namely instantaneous and progressive. The ohmic drop is discussed and a procedure for this correction is indicated. Recent results of Angerstein-Kozlowska, Conway and Klinger are critically investigated. Several earlier results are deduced as special cases. Evans' overlap formula is generalised for the time-dependent case and the equivalence between Avrami's and Evans' equations established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave-based methods are widely employed to synthesize metal nanoparticles on various substrates. However, the detailed mechanism of formation of such hybrids has not been addressed. In this paper, we describe the thermodynamic and kinetic aspects of reduction of metal salts by ethylene glycol under microwave heating conditions. On the basis of this analysis, we identify the temperatures above which the reduction of the metal salt is thermodynamically favorable and temperatures above which the rates of homogeneous nucleation of the metal and the heterogeneous nucleation of the metal on supports are favored. We delineate different conditions which favor the heterogeneous nucleation of the metal on the supports over homogeneous nucleation in the solvent medium based on the dielectric loss parameters of the solvent and the support and the metal/solvent and metal/support interfacial energies. Contrary to current understanding, we show that metal particles can be selectively formed on the substrate even under situations where the temperature of the substrate Is lower than that of the surrounding medium. The catalytic activity of the Pt/CeO(2) and Pt/TiO(2) hybrids synthesized by this method for H(2) combustion reaction shows that complete conversion is achieved at temperatures as low as 100 degrees C with Pt-CeO(2) catalyst and at 50 degrees C with Pt-TiO(2) catalyst. Our method thus opens up possibilities for rational synthesis of high-activity supported catalysts using a fast microwave-based reduction method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of models which are based on adsorption, nucleation growth and their coupling is discussed. In particular, the potentiostatic response of a model that involves nucleative phase growth via direct incorporation and adsorptive discharge of metal ions on the free area is analysed for both instantaneous and progressive nucleation. This model is able to predict certain experimental features in the potentiostatic transient, like the initial fall, shoulder or maximum (as well as minimum) which have not been predicted by models analysed hitherto.Limiting behaviour for short and long times as well as a description of the above-mentioned features in terms of model parameters are given.A special case of the above model, viz. a reversible adsorption–nucleation model, wherein the adsorption is very fast, is shown to give rise to transients which can be distinguished from the pure nucleation-growth transients only by its parametric dependence, but not by the form.