950 resultados para BLOOD-STAGE MALARIA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short-chain fatty acid derivative that regulates the activity of α-ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra-hepaticparasite maturation. LipB-deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid-restricted conditions induced by treatment with the lipoic acid analogue 8-bromo-octanoate or with the lipid-reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This protocol describes a method for obtaining rodent Plasmodium parasite clones with high efficiency, which takes advantage of the normal course of Plasmodium in vitro exoerythrocytic development. At the completion of development, detached cells/merosomes form, which contain hundreds to thousands of merozoites. As all parasites within a single detached cell/merosome derive from the same sporozoite, we predicted them to be genetically identical. To prove this, hepatoma cells were infected simultaneously with a mixture of Plasmodium berghei sporozoites expressing either GFP or mCherry. Subsequently, individual detached cells/merosomes from this mixed population were selected and injected into mice, resulting in clonal blood stage parasite infections. Importantly, as a large majority of mice become successfully infected using this protocol, significantly less mice are necessary than for the widely used technique of limiting dilution cloning. To produce a clonal P. berghei blood stage infection from a non-clonal infection using this procedure requires between 4 and 5 weeks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a unique population of lymphocytes that coexpress a semiinvariant T cell and natural killer cell receptors, which are particularly abundant in the liver. To investigate the possible effect of these cells on the development of the liver stages of malaria parasites, a glycolipid, α-galactosylceramide (α-GalCer), known to selectively activate Vα14 NKT cells in the context of CD1d molecules, was administered to sporozoite-inoculated mice. The administration of α-GalCer resulted in rapid, strong antimalaria activity, inhibiting the development of the intrahepatocytic stages of the rodent malaria parasites Plasmodium yoelii and Plasmodium berghei. The antimalaria activity mediated by α-GalCer is stage-specific, since the course of blood-stage-induced infection was not inhibited by administration of this glycolipid. Furthermore, it was determined that IFN-γ is essential for the antimalaria activity mediated by the glycolipid. Taken together, our results provide the clear evidence that NKT cells can mediate protection against an intracellular microbial infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although vaccines have widely been regarded as the most cost-effective way to improve public health, for some organisms new technological advances in vaccine design and delivery, incurring additional developmental costs, will be essential. These organisms are typically those for which natural immunity is either slow to develop or does not develop at all. Clearly, such organisms have evolved strategies to evade immune responses and innovative approaches will be required to induce a type of immune response which is both different to that which develops naturally and is effective. This article describes some approaches to develop vaccines for two such organisms (malaria parasites and Streptococcus pyogenes (group A Streptococcus)) that are associated with widespread mortality and morbidity, mostly in the poorest countries of the world. At this stage, the challenges are primarily scientific, but if these hurdles are surmounted then the challenges will become financial ones - developing much needed vaccines for people least able to afford them. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of the present study is to standardize the technical variables for preparation and storage of Plasmodium falciparum and of antigen components extracted with the amphoteric detergent Zwittergent. P. falciparum obtained from in vitro culture was stored at different temperatures and for different periods of time. For each variable, antigen components of the parasite were extracted in the presence or absence of protease inhibitors and submitted or not to later dialysis. Products were stored for 15, 30 and 60 days at different temperatures and immunological activity of each extract was determined by SDS-PAGE and ELISA using positive or negative standard sera for the presence of IgG directed to blood stage antigens of P. falciparum. Antigen extracts obtained from parasites stored at -20oC up to 10 days or at -70oC for 2 months presented the best results, showing well-defined bands on SDS-PAGE and Western blots and presenting absorbance values in ELISA that permitted safe differentiation between positive and negative sera.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

South American Aoutus an d Saimiri monkeys, which are susceptible to infection with human malarias, have been used to develop models for the testing of huma malaria vaccines. Studies indicate that blood-stage and sporozoite vaccines can be tested in these monkeys using appropriate strains of parasites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The merozoite surface protein-1 (MSP-1) locus of Plasmodium falciparum codes for a major asexual blood-stage antigen currently proposed as a major malaria vaccine candidate. The protein, however, shows extensive polymorphism, which may compromise its use in sub-unit vaccines. Here we compare the patterns of allelic diversity at the MSP-1 locus in wild isolates from three epidemiologically distinct malaria-endemic areas: the hypoendemic southwestern Brazilian Amazon (n = 54), the mesoendemic southern Vietnam (n = 238) and the holoendemic northern Tanzania (n = 79). Fragments of the variable blocks 2, 4a, 4b and 6 or 10 of this single-copy gene were amplified by the polymerase chain reaction, and 24 MSP-1 gene types were defined as unique combinations of allelic types in each variable block. Ten different MSP-1 types were identified in Brazil, 23 in Vietnam and 13 in Tanzania. The proportion of genetically mixed infections (isolates with parasites carrying more than one MSP-1 version) ranged from 39% in Brazil to 44% in Vietnam and 60% in Tanzania. The vast majority (90%) of the typed parasite populations from Brazil and Tanzania belonged to the same seven most frequent MSP-1 gene types. In contrast, these seven gene types corresponded to only 61% of the typed parasite populations from Vietnam. Non-random associations were found between allelic types in blocks 4a and 6 among Vietnamese isolates, the same pattern being observed in independent studies performed in 1994, 1995 and 1996. These results suggest that MSP-1 is under selective pressure in the local parasite population. Nevertheless, the finding that similar MSP-1 type frequencies were found in 1994 and 1996 argues against the prominence of short-term frequency-dependent immune selection of MSP-1 polymorphisms. Non-random associations between MSP-1 allelic types, however, were not detected among isolates from Brazil and Tanzania. A preliminary analysis of the distribution of MSP-1 gene types per host among isolates from Tanzania, but not among those from Brazil and Vietnam, shows significant deviation from that expected under the null hypothesis of independent distribution of parasites carrying different gene types in the human hosts. Some epidemiological consequences of these findings are discussed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CD8+ T cells have been implicated as critical effector cells in protection against the pre-erythrocytic stage of malaria in mice and humans following irradiated sporozoite immunization. Immunization experiments in animal models by several investigators have suggested different strategies for vaccination against malaria and many of the targets from liver stage malaria antigens have been shown to be immunogenic and to protect mice from the sporozoite challenge. Several prime/boost protocols with replicating vectors, such as vaccinia/influenza, with non-replicating vectors, such as recombinant particles derived from yeast transposon (Ty-particles) and modified vaccinia virus Ankara, and DNA, significantly enhanced CD8+ T cell immunogenicity and also the protective efficacy against the circumsporosoite protein of Plasmodium berghei and P. yeti. Based on these experimental results the development of a CD8+ T cell inducing vaccine has moved forward from epitope identification to planning stages of safety and immunogenicity trials of candidate vaccines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Malaria is one of the most important tropical and infectious diseases causing many deaths and enormous social and economic consequences, particularly in the developing countries. Despite of widely use of anti-malaria drugs and insecticide, the development of successful vaccines constitutes one of the main strategies to control malaria transmission. Several proteins expressed from blood stage such as merozoite surface proteins (MSP] or liver stage as circumsporozoite protein (CSP) are shown to be the targets of immune responses in humans and in animals. Thus, several studies have illustrated that natural infection and laboratory immunizations of humans and animals with Plasmodium sporozoite (SPZ) and its derivate-proteins (peptides) can elicit protection and control of parasite infection. However, a clear understanding of immune response against defined Plasmodium proteins should be the prerequisite conditions before any development of appropriate vaccines. In this order, our study focused on the immune responses to MSP2 (dimorphic and C-terminal fragments) in human and mice; and the mechanisms by which mouse infected hepatocytes present Plasmodium antigens to CD8+ T-cells to induce protective immunity in mice.¦The first part of this work shows that infected hepatocytes can present Plasmodium antigens to PbCSP-specific CD8+ T-cells and induce a protective immunity in mice. Here, this was addressed in vivo and showed that the infected hepatocytes were able of stimulating of primed-and naive-CD8+ T-cell clones and induced fully protective immunity against SPZ challenge. The role of infected hepatocytes in antigen presentation was illustrated here by their graft into immuno-deficient mice and depletion of cosspresenting dentritic cells (DCs) that are known to have key role in the activation of CD8+ T-cells during the liver cycle stage of Plasmodium.¦The second part of this project concerned the fine specificity of Ab responses regarding D and C regions of the two allelic families of MSP2 (3D7 and FC27). Covering of the two regions by overlapping-20 mers led to delineate the epitopes in the different endemic areas and different age groups of donors. The major epitopes characterizing D or C regions were conserved in different endemic areas (P12/P13 and P15/P16 for the 3D7-D, P23/24 and P25/26 for the FC27-D; P29/P30 for the C region). This offers thus, the possibility of a multi-epitope vaccine design including the major epitopes from the two domains of the two allelic MSP2 families. On the other, the 20 mers, particularly some major epitopes of the 3D7-Dregion (P12, P13 and P16) belonged to the epitopes that presented a high probability to be associated with protection in the children group [1 to 5 year-old). In addition, D and C LSP purified Abs (pAbs) recognized merozoite derived polypeptides and native proteins. A crossreactivity activity of homologous pAbs against the heterologous was also illustrated between the two allelic MSP2 parasites. Finally, the functional analysis of D regions pAbs showed an inhibition of Plasmodium falciparum growth suggesting the functional biological activity of the D region pAbs in the control of malaria.¦The last part of this project aimed the evaluation of the immunogenicity of the D and C region LSPs of the two allelic MSP2 families in the presence of adjuvants for the possible use in clinical trial study in humans. The MSP2 LSP mixture showed that D and C were immunogenic and defined limited epitopes (whose intensity of immune responses) depending on the adjuvants and mouse strain for the D regions. The major epitopes characterizing the C region were usually conserved in different strains of mouse and adjuvants used. Furthermore, the single region (either with D or C) immunization of mice confirmed the immunogenicity and the presence of their limited epitopes. We concluded that the possibility to finely delineate in animals the immune responses to antigens might help to select optimal antigen/adjuvant combinations to be tested later in clinical trials. Thus, formulation of glucopyranosyl-lipid A stable emulsion, GLA-SE (toll like receptor (TLR) 4 agonist) and its different combination (CpG: TLR9 agonist and GDQ: LR7 agonist) with MSP2 LSP was better than with alum, montanide ISA 720 (Mt) and virosome. Immunization of mice with allelic LSP did not show a crossreactivity between the two allelic MSP2 parasites unlike as humans, suggesting that the crossreactivity could be acquired during natural infection of the population who are usually exposed to both allelic parasite forms (3D7 and FC27).¦Nevertheless, similar epitope of D (P12, P13 and P25) and C (P29) regions have been found both in mice and human. This offers an opportunity to compare their epitopes in naïve immunized donors with LSPs and naturally infected populations in the endemic areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between autoimmunity and malaria is not well understood. To determine whether autoimmune responses have a protective role during malaria, we studied the pattern of reactivity to plasmodial antigens of sera from 93 patients with 14 different autoimmune diseases (AID) who were not previously exposed to malaria. Sera from patients with 13 different AID reacted against Plasmodium falciparum by indirect fluorescent antibody test with frequencies varying from 33-100%. In addition, sera from 37 AID patients were tested for reactivity against Plasmodium yoelii 17XNL and the asexual blood stage forms of three different P. falciparum strains. In general, the frequency of reactive sera was higher against young trophozoites than schizonts (p < 0.05 for 2 strains), indicating that the antigenic determinants targeted by the tested AID sera might be more highly expressed by the former stage. The ability of monoclonal auto-antibodies (auto-Ab) to inhibit P. falciparum growth in vitro was also tested. Thirteen of the 18 monoclonal auto-Ab tested (72%), but none of the control monoclonal antibodies, inhibited parasite growth, in some cases by greater than 40%. We conclude that autoimmune responses mediated by auto-Ab may present anti-plasmodial activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several species of Aspidosperma plants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellowperoba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorum extracts, the plant activity against Plasmodium falciparum was evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium bergheiin mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are 'resistant' to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens. METHODOLOGY/FINDINGS: We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion. CONCLUSION/SIGNIFICANCE: Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades host immunity is through DARC indirectly down-regulating humoral responses against erythrocytic invasion and development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Plasmodium falciparum MSP2 is a blood stage protein that is associated with protection against malaria. It was shown that the MSP2 dimorphic (D) and constant (C) regions were well recognized by immune human antibodies, and were characterized by major conserved epitopes in different endemic areas and age groups. These Abs recognized merozoite-derived proteins in WB and IFA. Here, the goal was to determine in mice the immunogenicity of the two allelic MSP2 D and C domains formulated with different adjuvants, for their possible use in future clinical studies. METHOD: Female A/J, C3H, and ICR mice were immunized subcutaneously 3 times at 3-week interval with a mixture of allelic and conserved MSP2 long synthetic peptides formulated with different adjuvants. One week after the third injection, sera from each group were obtained and stored at -20°C for subsequent testing. RESULTS: Both domains of the two MSP2 families are immunogenic and the fine specificity and intensity of the Ab responses are dependent on mouse strains and adjuvants. The major epitopes were restricted to the 20-mer peptide sequences comprising the last 8aa of D and first 12aa of C of the two allelic families and the first 20aa of the C region, this for most strains and adjuvants. Strong immune responses were associated with GLA-SE adjuvant and its combination with other TLR agonists (CpG or GDQ) compared to alhydrogel and Montanide. Further, the elicited Abs were also capable of recognizing Plasmodium-derived MSP2 and inhibiting parasite growth in ADCI. CONCLUSION: The data provide a valuable opportunity to evaluate in mice different adjuvant and antigen formulations of a candidate vaccine containing both MSP2 D and C fragments. The formulations with GLA-SE seem to be a promising option to be compared with the alhydrogel one in human clinical trials.