976 resultados para BLACK HOLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have constructed axially symmetric vacuum solutions of the gravitational field equations in a Randall-Sundrum brane. A non-null effective cosmological constant is considered, and asymptotically de Sitter and anti-de Sitter spacetimes are obtained. The solutions describe rotating black holes in a four-dimensional brane. Optical features of the solutions are treated, emphasizing the rotation of the polarization vector along null congruences. DOI: 10.1103/PhysRevD.86.124047

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that a single imperfect fluid can be used as a source to obtain a mass-varying black hole in an expanding universe. This approach generalizes the well-known McVittie spacetime, by allowing the mass to vary thanks to a novel mechanism based on the presence of a temperature gradient. This fully dynamical solution, which does not require phantom fields or fine-tuning, is a step forward in a new direction in the study of systems whose local gravitational attraction is coupled to the expansion of the universe. We present a simple but instructive example for the mass function and briefly discuss the structure of the apparent horizons and the past singularity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the spherical accretion of generic fluids onto black holes. We show that, if the black hole metric satisfies certain conditions, in the presence of a test fluid it is possible to derive a fully relativistic prescription for the black hole mass variation. Although the resulting equation may seem obvious due to a form of it appearing as a step in the derivation of the Schwarzschild metric, this geometrical argument is necessary to fix the added degree of freedom one gets for allowing the mass to vary with time. This result has applications on cosmological accretion models and provides a derivation from first principles to serve as a basis to the accretion equations already in use in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we probe the stability of a z = 3 three-dimensional Lifshitz black hole by using scalar and spinorial perturbations. We found an analytical expression for the quasinormal frequencies of the scalar probe field, which perfectly agree with the behavior of the quasinormal modes obtained numerically. The results for the numerical analysis of the spinorial perturbations reinforce the conclusion of the scalar analysis, i.e., the model is stable under scalar and spinor perturbations. As an application we found the area spectrum of the Lifshitz black hole, which turns out to be equally spaced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thanks to the Chandra and XMM–Newton surveys, the hard X-ray sky is now probed down to a flux limit where the bulk of the X-ray background is almost completely resolved into discrete sources, at least in the 2–8 keV band. Extensive programs of multiwavelength follow-up observations showed that the large majority of hard X–ray selected sources are identified with Active Galactic Nuclei (AGN) spanning a broad range of redshifts, luminosities and optical properties. A sizable fraction of relatively luminous X-ray sources hosting an active, presumably obscured, nucleus would not have been easily recognized as such on the basis of optical observations because characterized by “peculiar” optical properties. In my PhD thesis, I will focus the attention on the nature of two classes of hard X-ray selected “elusive” sources: those characterized by high X-ray-to-optical flux ratios and red optical-to-near-infrared colors, a fraction of which associated with Type 2 quasars, and the X-ray bright optically normal galaxies, also known as XBONGs. In order to characterize the properties of these classes of elusive AGN, the datasets of several deep and large-area surveys have been fully exploited. The first class of “elusive” sources is characterized by X-ray-to-optical flux ratios (X/O) significantly higher than what is generally observed from unobscured quasars and Seyfert galaxies. The properties of well defined samples of high X/O sources detected at bright X–ray fluxes suggest that X/O selection is highly efficient in sampling high–redshift obscured quasars. At the limits of deep Chandra surveys (∼10−16 erg cm−2 s−1), high X/O sources are generally characterized by extremely faint optical magnitudes, hence their spectroscopic identification is hardly feasible even with the largest telescopes. In this framework, a detailed investigation of their X-ray properties may provide useful information on the nature of this important component of the X-ray source population. The X-ray data of the deepest X-ray observations ever performed, the Chandra deep fields, allows us to characterize the average X-ray properties of the high X/O population. The results of spectral analysis clearly indicate that the high X/O sources represent the most obscured component of the X–ray background. Their spectra are harder (G ∼ 1) than any other class of sources in the deep fields and also of the XRB spectrum (G ≈ 1.4). In order to better understand the AGN physics and evolution, a much better knowledge of the redshift, luminosity and spectral energy distributions (SEDs) of elusive AGN is of paramount importance. The recent COSMOS survey provides the necessary multiwavelength database to characterize the SEDs of a statistically robust sample of obscured sources. The combination of high X/O and red-colors offers a powerful tool to select obscured luminous objects at high redshift. A large sample of X-ray emitting extremely red objects (R−K >5) has been collected and their optical-infrared properties have been studied. In particular, using an appropriate SED fitting procedure, the nuclear and the host galaxy components have been deconvolved over a large range of wavelengths and ptical nuclear extinctions, black hole masses and Eddington ratios have been estimated. It is important to remark that the combination of hard X-ray selection and extreme red colors is highly efficient in picking up highly obscured, luminous sources at high redshift. Although the XBONGs do not present a new source population, the interest on the nature of these sources has gained a renewed attention after the discovery of several examples from recent Chandra and XMM–Newton surveys. Even though several possibilities were proposed in recent literature to explain why a relatively luminous (LX = 1042 − 1043erg s−1) hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the very nature of XBONGs is still subject of debate. Good-quality photometric near-infrared data (ISAAC/VLT) of 4 low-redshift XBONGs from the HELLAS2XMMsurvey have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique. In two out of the four sources, the presence of a nuclear weak component hosted by a bright galaxy has been revealed. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4p) at the nuclear source, may explain the lack of optical emission lines. A weak nucleus not able to produce suffcient UV photons may provide an alternative or additional explanation. On the basis of an admittedly small sample, we conclude that XBONGs constitute a mixed bag rather than a new source population. When the presence of a nucleus is revealed, it turns out to be mildly absorbed and hosted by a bright galaxy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis, we investigate the cosmological co-evolution of supermassive black holes (BHs), Active Galactic Nuclei (AGN) and their hosting dark matter (DM) halos and galaxies, within the standard CDM scenario. We analyze both analytic, semi-analytic and hybrid techniques and use the most recent observational data available to constrain the assumptions underlying our models. First, we focus on very simple analytic models where the assembly of BHs is directly related to the merger history of DM haloes. For this purpose, we implement the two original analytic models of Wyithe & Loeb 2002 and Wyithe & Loeb 2003, compare their predictions to the AGN luminosity function and clustering data, and discuss possible modifications to the models that improve the match to the observation. Then we study more sophisticated semi-analytic models in which however the baryonic physics is neglected as well. Finally we improve the hybrid simulation of De Lucia & Blaizot 2007, adding new semi-analytical prescriptions to describe the BH mass accretion rate during each merger event and its conversion into radiation, and compare the derived BH scaling relations, fundamental plane and mass function, and the AGN luminosity function with observations. All our results support the following scenario: • The cosmological co-evolution of BHs, AGN and galaxies can be well described within the CDM model. • At redshifts z & 1, the evolution history of DM halo fully determines the overall properties of the BH and AGN populations. The AGN emission is triggered mainly by DM halo major mergers and, on average, AGN shine at their Eddington luminosity. • At redshifts z . 1, BH growth decouples from halo growth. Galaxy major mergers cannot constitute the only trigger to accretion episodes in this phase. • When a static hot halo has formed around a galaxy, a fraction of the hot gas continuously accretes onto the central BH, causing a low-energy “radio” activity at the galactic centre, which prevents significant gas cooling and thus limiting the mass of the central galaxies and quenching the star formation at late time. • The cold gas fraction accreted by BHs at high redshifts seems to be larger than at low redshifts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seyfert galaxies are the closest active galactic nuclei. As such, we can use them to test the physical properties of the entire class of objects. To investigate their general properties, I took advantage of different methods of data analysis. In particular I used three different samples of objects, that, despite frequent overlaps, have been chosen to best tackle different topics: the heterogeneous BeppoS AX sample was thought to be optimized to test the average hard X-ray (E above 10 keV) properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to compare the properties of low-luminosity sources to the ones of higher luminosity and, thus, it was also used to test the emission mechanism models; finally, the XMM–Newton sample was extracted from the X-CfA sample so as to ensure a truly unbiased and well defined sample of objects to define the average properties of Seyfert galaxies. Taking advantage of the broad-band coverage of the BeppoS AX MECS and PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (~1.8), the high-energy cut-off (~290 keV), and the relative amount of cold reflection (~1.0). Moreover the unified scheme for active galactic nuclei was positively tested. The distribution of isotropic indicators used here (photon index, relative amount of reflection, high-energy cut-off and narrow FeK energy centroid) are similar in type I and type II objects while the absorbing column and the iron line equivalent width significantly differ between the two classes of sources with type II objects displaying larger absorbing columns. Taking advantage of the XMM–Newton and X–CfA samples I also deduced from measurements that 30 to 50% of type II Seyfert galaxies are Compton thick. Confirming previous results, the narrow FeK line is consistent, in Seyfert 2 galaxies, with being produced in the same matter responsible for the observed obscuration. These results support the basic picture of the unified model. Moreover, the presence of a X-ray Baldwin effect in type I sources has been measured using for the first time the 20-100 keV luminosity (EW proportional to L(20-100)^(−0.22±0.05)). This finding suggests that the torus covering factor may be a function of source luminosity, thereby suggesting a refinement of the baseline version of the unifed model itself. Using the BeppoSAX sample, it has been also recorded a possible correlation between the photon index and the amount of cold reflection in both type I and II sources. At a first glance this confirms the thermal Comptonization as the most likely origin of the high energy emission for the active galactic nuclei. This relation, in fact, naturally emerges supposing that the accretion disk penetrates, depending to the accretion rate, the central corona at different depths (Merloni et al. 2006): the higher accreting systems hosting disks down to the last stable orbit while the lower accreting systems hosting truncated disks. On the contrary, the study of the well defined X–C f A sample of Seyfert galaxies has proved that the intrinsic X-ray luminosity of nearby Seyfert galaxies can span values between 10^(38−43) erg s^−1, i.e. covering a huge range of accretion rates. The less efficient systems have been supposed to host ADAF systems without accretion disk. However, the study of the X–CfA sample has also proved the existence of correlations between optical emission lines and X-ray luminosity in the entire range of L_(X) covered by the sample. These relations are similar to the ones obtained if high-L objects are considered. Thus the emission mechanism must be similar in luminous and weak systems. A possible scenario to reconcile these somehow opposite indications is assuming that the ADAF and the two phase mechanism co-exist with different relative importance moving from low-to-high accretion systems (as suggested by the Gamma vs. R relation). The present data require that no abrupt transition between the two regimes is present. As mentioned above, the possible presence of an accretion disk has been tested using samples of nearby Seyfert galaxies. Here, to deeply investigate the flow patterns close to super-massive black-holes, three case study objects for which enough counts statistics is available have been analysed using deep X-ray observations taken with XMM–Newton. The obtained results have shown that the accretion flow can significantly differ between the objects when it is analyzed with the appropriate detail. For instance the accretion disk is well established down to the last stable orbit in a Kerr system for IRAS 13197-1627 where strong light bending effect have been measured. The accretion disk seems to be formed spiraling in the inner ~10-30 gravitational radii in NGC 3783 where time dependent and recursive modulation have been measured both in the continuum emission and in the broad emission line component. Finally, the accretion disk seems to be only weakly detectable in rk 509, with its weak broad emission line component. Finally, blueshifted resonant absorption lines have been detected in all three objects. This seems to demonstrate that, around super-massive black-holes, there is matter which is not confined in the accretion disk and moves along the line of sight with velocities as large as v~0.01-0.4c (whre c is the speed of light). Wether this matter forms winds or blobs is still matter of debate together with the assessment of the real statistical significance of the measured absorption lines. Nonetheless, if confirmed, these phenomena are of outstanding interest because they offer new potential probes for the dynamics of the innermost regions of accretion flows, to tackle the formation of ejecta/jets and to place constraints on the rate of kinetic energy injected by AGNs into the ISM and IGM. Future high energy missions (such as the planned Simbol-X and IXO) will likely allow an exciting step forward in our understanding of the flow dynamics around black holes and the formation of the highest velocity outflows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD Thesis is devoted to the accurate analysis of the physical properties of Active Galactic Nuclei (AGN) and the AGN/host-galaxy interplay. Due to the broad-band AGN emission (from radio to hard X-rays), a multi-wavelength approach is mandatory. Our research is carried out over the COSMOS field, within the context of the XMM-Newton wide-field survey. To date, the COSMOS field is a unique area for comprehensive multi-wavelength studies, allowing us to define a large and homogeneous sample of QSOs with a well-sampled spectral coverage and to keep selection effects under control. Moreover, the broad-band information contained in the COSMOS database is well-suited for a detailed analysis of AGN SEDs, bolometric luminosities and bolometric corrections. In order to investigate the nature of both obscured (Type-2) and unobscured (Type-1) AGN, the observational approach is complemented with a theoretical modelling of the AGN/galaxy co-evolution. The X-ray to optical properties of an X-ray selected Type-1 AGN sample are discussed in the first part. The relationship between X-ray and optical/UV luminosities, parametrized by the spectral index αox, provides a first indication about the nature of the central engine powering the AGN. Since a Type-1 AGN outshines the surrounding environment, it is extremely difficult to constrain the properties of its host-galaxy. Conversely, in Type-2 AGN the host-galaxy light is the dominant component of the optical/near-IR SEDs, severely affecting the recovery of the intrinsic AGN emission. Hence a multi-component SED-fitting code is developed to disentangle the emission of the stellar populationof the galaxy from that associated with mass accretion. Bolometric corrections, luminosities, stellar masses and star-formation rates, correlated with the morphology of Type-2 AGN hosts, are presented in the second part, while the final part concerns a physically-motivated model for the evolution of spheroidal galaxies with a central SMBH. The model is able to reproduce two important stages of galaxy evolution, namely the obscured cold-phase and the subsequent quiescent hot-phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo della tesi è descrivere i buchi neri di Kerr. Dopo aver introdotto tutti gli strumenti matematici necessari quali tensori, vettori di Killing e geodetiche, enunceremo la metrica di Kerr, il teorema no-hair e il frame-dragging. In seguito, a partire dalla metrica di Kerr, calcoleremo e descriveremo le ergosfere, gli orizzonti degli eventi e il moto dei fotoni nel piano equatoriale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro viene presentato un recente modello di buco nero che implementa le proprietà quantistiche di quelle regioni dello spaziotempo dove non possono essere ignorate, pena l'implicazione di paradossi concettuali e fenomenologici. In suddetto modello, la regione di spaziotempo dominata da comportamenti quantistici si estende oltre l'orizzonte del buco nero e suscita un'inversione, o più precisamente un effetto tunnel, della traiettoria di collasso della stella in una traiettoria di espansione simmetrica nel tempo. L'inversione impiega un tempo molto lungo per chi assiste al fenomeno a grandi distanze, ma inferiore al tempo di evaporazione del buco nero tramite radiazione di Hawking, trascurata e considerata come un effetto dissipativo da studiarsi in un secondo tempo. Il resto dello spaziotempo, fuori dalla regione quantistica, soddisfa le equazioni di Einstein. Successivamente viene presentata la teoria della Gravità Quantistica a Loop (LQG) che permetterebbe di studiare la dinamica della regione quantistica senza far riferimento a una metrica classica, ma facendo leva sul contenuto relazionale del tessuto spaziotemporale. Il campo gravitazionale viene riformulato in termini di variabili hamiltoniane in uno spazio delle fasi vincolato e con simmetria di gauge, successivamente promosse a operatori su uno spazio di Hilbert legato a una vantaggiosa discretizzazione dello spaziotempo. La teoria permette la definizione di un'ampiezza di transizione fra stati quantistici di geometria spaziotemporale, applicabile allo studio della regione quantistica nel modello di buco nero proposto. Infine vengono poste le basi per un calcolo in LQG dell'ampiezza di transizione del fenomeno di rimbalzo quantistico all'interno del buco nero, e di conseguenza per un calcolo quantistico del tempo di rimbalzo nel riferimento di osservatori statici a grande distanza da esso, utile per trattare a posteriori un modello che tenga conto della radiazione di Hawking e, auspicatamente, fornisca una possibile risoluzione dei problemi legati alla sua esistenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrodynamics can be consistently formulated on surfaces of arbitrary co-dimension in a background space-time, providing the effective theory describing long-wavelength perturbations of black branes. When the co-dimension is non-zero, the system acquires fluid-elastic properties and constitutes what is called a fluid brane. Applying an effective action approach, the most general form of the free energy quadratic in the extrinsic curvature and extrinsic twist potential of stationary fluid brane configurations is constructed to second order in a derivative expansion. This construction generalizes the Helfrich-Canham bending energy for fluid membranes studied in theoretical biology to the case in which the fluid is rotating. It is found that stationary fluid brane configurations are characterized by a set of 3 elastic response coefficients, 3 hydrodynamic response coefficients and 1 spin response coefficient for co-dimension greater than one. Moreover, the elastic degrees of freedom present in the system are coupled to the hydrodynamic degrees of freedom. For co-dimension-1 surfaces we find a 8 independent parameter family of stationary fluid branes. It is further shown that elastic and spin corrections to (non)-extremal brane effective actions can be accounted for by a multipole expansion of the stress-energy tensor, therefore establishing a relation between the different formalisms of Carter, Capovilla-Guven and Vasilic-Vojinovic and between gravity and the effective description of stationary fluid branes. Finally, it is shown that the Young modulus found in the literature for black branes falls into the class predicted by this approach - a relation which is then used to make a proposal for the second order effective action of stationary blackfolds and to find the corrected horizon angular velocity of thin black rings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We argue that the effective theory describing the long-wavelength dynamics of black branes is the same effective theory that describes the dynamics of biophysical membranes. We improve the phase structure of higher-dimensional black rings by considering finite thickness corrections in this effective theory, showing a striking agreement between our analytical results and recent numerical constructions while simultaneously drawing a parallel between gravity and the effective theory of biophysical membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize uniqueness theorems for non-extremal black holes with three mutually independent Killing vector fields in five-dimensional minimal supergravity in order to account for the existence of non-trivial two-cycles in the domain of outer communication. The black hole space-times we consider may contain multiple disconnected horizons and be asymptotically flat or asymptotically Kaluza–Klein. We show that in order to uniquely specify the black hole space-time, besides providing its domain structure and a set of asymptotic and local charges, it is necessary to measure the magnetic fluxes that support the two-cycles as well as fluxes in the two semi-infinite rotation planes of the domain diagram.