997 resultados para BIOLOGY TEACHING
Resumo:
Presentamos una experiencia exitosa de aprendizaje que partió de Criptogamia (asignatura optativa de segundo ciclo de Biología), que dio lugar a un proyecto de investigación gestionado por los propios alumnos. La iniciativa se consolidó estableciendo una Asociación de Estudiantes centrada en investigación y divulgación. En poco tiempo, los participantes han presentado comunicaciones científicas, y organizado actividades dirigidas a diversos públicos, dentro y fuera de la comunidad universitaria. Actualmente se plantea una colaboración multidisciplinar con otros organismos de investigación y la extensión de su ámbito de estudio. Abordamos su incidencia en el aprendizaje en varios aspectos: científico (técnicas específicas, rigor, búsqueda de información e interpretación de resultados), comunicativo (estructuración y presentación de la información obtenida, para diversos públicos), y organizativo, incluyendo el trabajo en equipo. Aunque de carácter espontáneo, esta experiencia muestra rasgos evaluables en cuanto a sus posibilidades para otras asignaturas. Analizamos las características y planteamiento de esta optativa, el perfil de sus alumnos, y el contexto universitario que la acoge. Detectamos como factores principales los aspectos participativos de la asignatura, la cohesión del grupo, el carácter voluntario de la implicación, los beneficios percibidos por los estudiantes, y la disponibilidad de recursos humanos (supervisión) y materiales (equipamiento y subvenciones)
Resumo:
This paper was written within the context of the research project “The development of teacher’ associative organizations and unionism (1889-1990)” funded by the Fundação para a Ciência e Tecnologia (Foundation for Science and Technology). Five important congresses about secondary education were organized in Portugal between 1927 and 1931. These congresses served to claim the rights of teachers and the consolidation of the class, as well as to promote the discussion of scientific and pedagogical problems. In these congresses, the presence of female teachers was residual. However, the few teachers who participated had a significant contribution to the definition of secondary education during the following decades. Among other issues, it contributed to the discussion of female education and to analyze the importance of Biology and Physical Education in high schools. This paper presents the analysis of the minutes of the 1927s and 1928s Congresses. This analysis allowed the assessment of the important role played by a group of teachers to define, at the end of the first third of the 20th century, the future guidelines of Portuguese secondary education. It also reported that these teachers were pioneers who opened the way for the increasing number of teachers in secondary education during the 20th century.
Resumo:
This paper uses the reflections of a recent workshop on biology and the humanities subject areas to consider the potential for designing a first year interdisciplinary module that brings together teachers and learners in the Biosciences with their counterparts in English and History. It considers three building blocks of module design: aims and objectives; teaching and learning strategies; and assessment; and provides a commentary on the discussion of interdisciplinarity in the broader literature. The authors argue that interdisciplinary teaching and learning must be transformative, but not in the way many previous advocates of interdisciplinarity have assumed. Rather than transcending disciplines, the authors contend that the aim should be to enhance disciplinary understanding. Learners should emerge from the interdisciplinary module not having lost their identity as biologists, but having enhanced it. They should have become ‘better’ biologists in the sense of having developed a broader, critical understanding of the precepts of their discipline, as a first step to an understanding of biology inflected with a literary and historical awareness.
Resumo:
This talk will describe a study designed to assess if clicker technology during a lesson can improve learning relative to traditional lecture alone. A control group was exposed to the stages of prenatal development via traditional lecture, and an experimental group was exposed to the material via an exercise that used clickers. A pretest showed no difference before the intervention. A posttest showed that the clicker group had significant gains indicating clickers may facilitate learning of science-based material.
Resumo:
The aim of this study was to investigate the students' preferred teaching techniques, such as traditional blackboard, power-point, or slide-projection, for biochemistry discipline in biomedicine and medicine courses from São Paulo State University, UNESP, Botucatu, São Paulo, Brazil. Preferences for specific topic and teaching techniques were determined from questionnaires on a Liquert scale from 1 to 5 (strongly disagree; disagree; neither agree, nor disagree; agree; strongly agree) distributed at the end of biochemistry discipline to 180 biomedical students (30 students/year) and 540 medical students (90 students/year), during the years 2000-2005. Despite of the different number of hours applied to the course topics for the two groups of students, the majority of undergraduates from biomedicine and medicine preferred metabolic topics. Although the perception of a medical student is expected to be different than that of a biomedical student, as the aims of the two programs are different, 92.4% of students from each course agreed or strongly agreed with the biochemistry topics, and 92.1% thought highly on this subject. The majority of students, a number of 139 undergraduates from biomedicine and 419 from medicine course, preferred traditional blackboard teaching than slide-projection, or power-point class. In conclusion, it is imperative that the health courses reflect on sophisticated technology and data presentation with high density of information in biochemistry discipline. The traditional classes with blackboard presentation were most favored by students from biomedicine and medicine courses. The use of students' preferred teaching techniques might turn biochemistry more easily understood for biomedical and medical students. © 2007 by The International Union of Biochemistry and Molecular Biology.
Resumo:
We report here part of a research project developed by the Science Education Research Group, titled: "Teachers’ Pedagogical Practices and formative processes in Science and Mathematics Education" which main goal is the development of coordinated research that can generate a set of subsidies for a reflection on the processes of teacher training in Sciences and Mathematics Education. One of the objectives was to develop continuing education activities with Physics teachers, using the History and Philosophy of Science as conductors of the discussions and focus of teaching experiences carried out by them in the classroom. From data collected through a survey among local Science, Physics, Chemistry, Biology and Mathematics teachers in Bauru, a São Paulo State city, we developed a continuing education proposal titled “The History and Philosophy of Science in the Physics teachers’ pedagogical practice”, lasting 40 hours of lessons. We followed the performance of five teachers who participated in activities during the 2008 first semester and were teaching Physics at High School level. They designed proposals for short courses, taking into consideration aspects of History and Philosophy of Science and students’ alternative conceptions. Short courses were applied in real classrooms situations and accompanied by reflection meetings. This is a qualitative research, and treatment of data collected was based on content analysis, according to Bardin [1].
Resumo:
Introduction: The Virtual Molecular Biology Lab is an innovative, computer-based educational program designed to teach advanced high school biology students how to create a transgenic mouse model in a simulated laboratory setting. It was created in an effort to combat the current decrease in adolescent enthusiasm for and academic achievement in science and science careers, especially in Hispanic students. Because studies have found that hands-on learning, particularly computer-based instruction, is effective in enhancing science achievement, the Virtual Lab is a potential tool for increasing the number of Hispanic students that choose to enter science fields. [See PDF for complete abstract]
Resumo:
At head of title: Department of Science and Art of the Committee of Council of Education.
Resumo:
Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.
Resumo:
A comprehensive and highly illustrated text providing a broad and invaluable overview of sensory systems at the molecular, cellular and neurophysiological level of vertebrates, invertebrates and prokaryotes. It retains a strong focus on human systems, and takes an evolutionary and comparative approach to review the mechanosenses, chemosenses, photosenses, and other sensory systems including those for detecting pain, temperature electric and magnetic fields etc. It incorporates exciting and significant new insights provided by molecular biology which demonstrate how similar the molecular architecture and physiology of sensory cells are across species and across sensory modality, often indicationg a common ancestry dating back over half a billion years. Written by a renowned author, with extensive teaching experience in the biology of sensory systems, this book includes: - Over 400 illustrations - Self–assessment questions - Full bibliography preceded by short bibliographical essays - Boxes containing useful supplementary material. It will be invaluable for undergraduates and postgraduates studying biology, zoology, animal physiology, neuroscience, anatomy, molecular biology, physiological psychology and related courses.
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.
Resumo:
This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as “Clickers”, improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after controlling for sex, GPA, academic status, experience with clickers, and instructional style. The results indicated a small increase in learning gains but these were not statistically significant. The data did not support an increase in learning based on the use of the CPS technology. This study adds to the body of research that questions whether CPS technology merits classroom adaptation.