971 resultados para BETA-GALACTOSIDASE ACTIVITY
Resumo:
Using genetically engineered glomerular mesangial cells, an in vivo gene transfer approach was developed that specifically targets the renal glomerulus. By combining this system with a tetracycline (Tc)-responsive promoter, the present study aimed to create a reversible on/off system for site-specific in vivo control of exogenous gene activity within the glomerulus. In the Tc regulatory system, a Tc-controlled transactivator (tTA) encoded by a regulator plasmid induces target gene transcription by binding to a tTA-responsive promoter located in a response plasmid. Tc inhibits this tTA-dependent transactivation via its affinity for tTA. In double-transfected cells, therefore, the activity of a transgene can be controlled by Tc. Cultured rat mesangial cells were cotransfected with a regulator plasmid and a response plasmid that introduces a beta-galactosidase gene. In vitro, stable double-transfectant MtTAG cells exhibited no beta-galactosidase activity in the presence of Tc. However, following withdrawal of Tc from culture media, expression of beta-galactosidase was induced within 24 h. When Tc was again added, the expression was rapidly resuppressed. Low concentrations of Tc were sufficient to maintain the silent state of tTA-dependent promoter. MtTAG cells were then transferred into the rat glomeruli via renal artery injection. In the isolated chimeric glomeruli, expression of beta-galactosidase was induced ex vivo in the absence of Tc, whereas it was repressed in its presence. When Tc-pretreated MtTAG cells were transferred into the glomeruli of untreated rats, beta-galactosidase expression was induced in vivo within 3 days. Oral administration of Tc dramatically suppressed this induction. These data demonstrate the feasibility of using mesangial cell vectors combined with the Tc regulatory system for site-specific in vivo control of exogenous gene expression in the glomerulus.
Resumo:
Adenoviral vector-mediated gene transfer offers significant potential for gene therapy of many human diseases. However, progress has been slowed by several limitations. First, the insert capacity of currently available adenoviral vectors is limited to 8 kb of foreign DNA. Second, the expression of viral proteins in infected cells is believed to trigger a cellular immune response that results in inflammation and in only transient expression of the transferred gene. We report the development of a new adenoviral vector that has all viral coding sequences removed. Thus, large inserts are accommodated and expression of all viral proteins is eliminated. The first application of this vector system carries a dual expression cassette comprising 28.2 kb of nonviral DNA that includes the full-length murine dystrophin cDNA under control of a large muscle-specific promoter and a lacZ reporter construct. Using this vector, we demonstrate independent expression of both genes in primary mdx (dystrophin-deficient) muscle cells.
Resumo:
In Parkinson's disease (PD), elevated beta (15-35Hz) power in subcortical motor networks is widely believed to promote aspects of PD symptomatology, moreover, a reduction in beta power and coherence accompanies symptomatic improvement following effective treatment with l-DOPA. Previous studies have reported symptomatic improvements that correlate with changes in cortical network activity following GABAA receptor modulation. In this study we have used whole-head magnetoencephalography to characterize neuronal network activity, at rest and during visually cued finger abductions, in unilaterally symptomatic PD and age-matched control participants. Recordings were then repeated following administration of sub-sedative doses of the hypnotic drug zolpidem (0.05mg/kg), which binds to the benzodiazepine site of the GABAA receptor. A beamforming based 'virtual electrode' approach was used to reconstruct oscillatory power in the primary motor cortex (M1), contralateral and ipsilateral to symptom presentation in PD patients or dominant hand in control participants. In PD patients, contralateral M1 showed significantly greater beta power than ipsilateral M1. Following zolpidem administration contralateral beta power was significantly reduced while ipsilateral beta power was significantly increased resulting in a hemispheric power ratio that approached parity. Furthermore, there was highly significant correlation between hemispheric beta power ratio and Unified Parkinson's Disease Rating Scale (UPDRS). The changes in contralateral and ipsilateral beta power were reflected in pre-movement beta desynchronization and the late post-movement beta rebound. However, the absolute level of movement-related beta desynchronization was not altered. These results show that low-dose zolpidem not only reduces contralateral beta but also increases ipsilateral beta, while rebalancing the dynamic range of M1 network oscillations between the two hemispheres. These changes appear to underlie the symptomatic improvements afforded by low-dose zolpidem.
Resumo:
Background: Core promoters are cis-regulatory modules to which bind the basal transcriptional machinery and which participate in the regulation of transcription initiation. Although core promoters have not been extensively investigated through functional assays in a chromosomal context, the available data suggested that the response of a given core promoter might vary depending on the promoter context. Previous studies suggest that a (-57/+40) fragment constitutes the core promoter of the BhC4-1 gene which is located in DNA puff C4 of the sciarid fly Bradysia hygida. Here we tested this (-57/+40) fragment in distinct regulatory contexts in order to verify if promoter context affects its core promoter activity. Results: Consistent with the activity of a core promoter, we showed that in the absence of upstream regulatory sequences the (-57/+40) fragment drives low levels of reporter gene mRNA expression throughout development in transgenic Drosophila. By assaying the (-57/+40) fragment in two distinct regulatory contexts, either downstream of the previously characterized Fbp1 enhancer or downstream of the UAS element, we showed that the BhC4-1 core promoter drives regulated transcription in both the germline and in various tissues throughout development. Furthermore, the use of the BhC4-1 core promoter in a UAS construct significantly reduced salivary gland ectopic expression in third instar larvae, which was previously described to occur in the context of the GAL4/UAS system. Conclusions: Our results from functional analysis in transgenic Drosophila show that the BhC4-1 core promoter drives gene expression regardless of the promoter context that was assayed. New insights into the functioning of the GAL4/UAS system in Drosophila were obtained, indicating that the presence of the SV40 sequence in the 3' UTR of a UAS construct does not preclude expression in the germline. Furthermore, our analysis indicated that ectopic salivary gland expression in the GAL4/UAS system does not depend only on sequences present in the GAL4 construct, but can also be affected by the core promoter sequences in the UAS construct. In this context, we propose that the sciarid BhC4-1 core promoter constitutes a valuable core promoter which can be employed in functional assays in insects.