970 resultados para BCG vaccination
Saponins, IL12 and BCG adjuvant in the FML-vaccine formulation against murine visceral leishmaniasis
Resumo:
The FML antigen of Leishmania donovani, in combination with either Riedel de Haen (R), QuilA, QS21 saponins, IL12 or BCG, was used in vaccination of an outbred murine model against visceral leishmaniasis (VL). Significant and specific increases in anti-FML IgG and IgM responses were detected for all adjuvants, and in anti-FML IgG1, IgG2a and IgG2b and delayed type of hypersensitivity to L. donovani lysate (DTH), only for all saponins and IL12. The QS21-FML and QuilA-FML groups achieved the highest IgG2a response. QuilA-FML developed the strongest DTH and QS21-FML animals showed the highest serum IFN-gamma concentrations. The reduction of parasitic load in the liver in response to each FML-vaccine formulation was: 52% (P < 0.025) for BCG-FML, 73% (P < 0.005) for R-FML, 93% (P < 0.005) for QuilA-FML and 79.2% (P < 0.025) for QS21-FML treated animals, respectively. Protection was specific for R-FML and QS21-FML while the QuilA saponin treatment itself induced 69% of LDU reduction. The FML-saponin vaccines promote significant, specific and strong protective effects against murine visceral leishmaniasis. BCG-FML induced minor and non-specific protection while IL 12-FML, although enhancing the specific antibody and IDR response, failed to reduce the parasitic load of infected animals. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Wildlife reservoirs of Mycobacterium bovis represent serious obstacles to the eradication of tuberculosis in domestic livestock. In Michigan, USA tuberculous white-tailed deer transmit M. bovis to cattle. One approach in dealing with this wildlife reservoir is to vaccinate deer in order to interrupt the cycle of deer to deer and deer to cattle transmission. Thirty-one white-tailed deer were assigned to one of three groups; 2 SC doses of 107 CFU of M. bovis BCG (n = 11); 1 SC dose of 107 CFU of M. bovis BCG (n = 10); or unvaccinated deer (n = 10). After vaccination, deer were inoculated intratonsilarly with 300 CFU of virulent M. bovis. Gross lesion severity scores of the medial retropharyngeal lymph node were significantly reduced in deer receiving 2 doses of BCG compared to unvaccinated deer. Vaccinated deer had fewer lymph node granulomas than unvaccinated deer, and most notably, fewer late stage granulomas characterized by coalescent caseonecrotic granulomas containing numerous acid-fast bacilli. BCG was isolated from 7/21 vaccinated deer as long as 249 days after vaccination. In one case BCG was transmitted from a vaccinated deer to an unvaccinated deer. In white-tailed deer BCG provides measurable protection against challenge with virulent M. bovis. However, persistence of vaccine within tissues as well as shedding of BCG from vaccinates remain areas for further investigation.
Resumo:
CD4(+) Foxp3(+) regulatory T cells inhibit the production of interferon-?, which is the major mediator of protection against Mycobacterium tuberculosis infection. In this study, we evaluated whether the protection conferred by three different vaccines against tuberculosis was associated with the number of spleen and lung regulatory T cells. We observed that after homologous immunization with the 65 000 molecular weight heat-shock protein (hsp 65) DNA vaccine, there was a significantly higher number of spleen CD4(+) Foxp3(+) cells compared with non-immunized mice. Heterologous immunization using bacillus Calmette Guerin (BCG) to prime and DNA-hsp 65 to boost (BCG/DNA-hsp 65) or BCG to prime and culture filtrate proteins (CFP)-CpG to boost (BCG/CFP-CpG) induced a significantly higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells compared with non-immunized mice. In addition, the protection conferred by either the BCG/DNA-hsp 65 or the BCG/CFP-CpG vaccines was significant compared with the DNA-hsp 65 vaccine. Despite the higher ratio of spleen CD4(+)/CD4(+) Foxp3(+) cells found in BCG/DNA-hsp 65-immunized or BCG/CFP-CpG-immunized mice, the lungs of both groups of mice were better preserved than those of DNA-hsp 65-immunized mice. These results confirm the protective efficacy of BCG/DNA-hsp 65 and BCG/CFP-CpG heterologous prime-boost vaccines and the DNA-hsp 65 homologous vaccine. Additionally, the prime-boost regimens assayed here represent a promising strategy for the development of new vaccines to protect against tuberculosis because they probably induce a proper ratio of CD4(+) and regulatory (CD4(+) Foxp3(+)) cells during the immunization regimen. In this study, this ratio was associated with a reduced number of regulatory cells and no injury to the lungs.
Resumo:
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.
Resumo:
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a disease with world wide consequences, affecting nearly a third of the world's population. The established vaccine for TB; an attenuated strain of Mycobacterium bovis Calmette Guerin (BCG), has existed virtually unchanged since 1921. Intensive research is focused on developing a TB vaccine that can surpass and improve the existing BCG vaccine. Lactoferrin, an iron binding protein found in mucosal secretions and granules of neutrophils was hypothesized to be an ideal adjuvant to enhance the efficacy of the BCG vaccine. Specifically, Lactoferrin enhanced the ratio of IL-12:IL-10 production from macrophages stimulated with LFS or infected with BCG, indicating the potential to affect T-cell development in vivo. Five different vaccination protocols were investigated for generation of host protective responses against MTB infection using Lactoferrin admixed to the BCG vaccine. Mice immunized and boosted at 2 weeks with BCG/Lactofefrin increased host protection against MTB infection by decreasing organ bacterial load and reducing lung histopathology. The observed postchallenge results paralleled with increasing production of IFN-γ, IL-2, TNF-α, and IL-12 from BCG stimulated splenocytes. In vitro studies examined possible mechanisms of Lactoferrin action on BCG infected macrophages and dendritic cells. Addition of Lactoferrin to BCG infected macrophages and dendritic cells increased stimulation of presensitized CD3+ and CD4+ T-cells. Analysis by fluorescent activated cell sorting (FACS) revealed an increase in surface expression of MHC I and decreased ratio of CD80/86 from BCG infected macrophages cultured with Lactoferrin. In contrast, Lactoferrin decreased surface expression of MHC I, MHC II, CD80, CD86, and CD40, but increased CD 11c, from BCG infected dendritic cells, indicating involvement of adhesion molecules. Overall, these studies indicate that Lactoferrin is a useful and effective adjuvant to improve efficacy of the BCG vaccine by enhancing generation of mycobacterial antigen specific T-cell responses through promotion of antigen presentation and T-cell stimulation.^
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016
Resumo:
In this work peptide antigens [ESAT-6,p45 in water (1ml, 1mg/ml)] have been adsorbed onto 10mg inorganic substrates (hydroxyapatite (MHA P201;P120, CHA), polystyrene, calcium carbonate and glass microspheres) and in vitro release characteristics were determined. The aim of formulation was to enhance the interaction of peptides with antigen presenting cells and to achieve rapid peptide release from the carrier compartment system in a mildly acidic environment. Hydroxyapatite microparticle P201 has a greater surface area and thus has the largest peptide adsorption compared to the P120. CHA gave a further higher adsorption due to larger surface area than that available on microparticles. These particles were incorporated into the BOVIGAMTM assay to determine if they improve the sensitivity. After overnight incubation the blood plasma was removed and the amount of IFN-g in each plasma sample was estimated. CHA and MHA P201 gave a significantly higher immune response at low peptide concentration compared to the free peptide, thus indicating that these systems can be used to evaluate Tuberculosis (TB) amongst cattle using the BOVIGAMTM assay. Badgers are a source of TB and pass infection to cattle. At the moment vaccination against TB in badgers is via the parenteral route and requires a trained veterinary surgeon as well as catching the badgers. This process is expensive and time consuming; consequently an oral delivery system for delivery of BCG vaccines is easier and cheaper. The initial stage involved addition of various surfactants and suspending agents to disperse BCG and the second stage involved testing for BCG viability. Various copolymers of Eudragit were used as enteric coating systems to protect BCG against the acidic environment of the stomach (SGF, 0.1M HCl pH 1.2 at 37oC) while dissolving completely in the alkaline environment of the small intestine (SIF, IM PBS solution pH 7.4 at 37oC). Eudragit L100 dispersed in 2ml PBS solution and 0.9ml Tween 80 (0.1%w/v) gave the best results remaining intact in SGF loosing only approximately 10-15% of the initial weight and dissolving completely within 3 hours. BCG was incorporated within the matrix formulation adjusted to pH 7 at the initial formulation stage containing PBS solution and Tween 80. It gave viability of x106 cfu/ml at initial formulation stage, freezing and freeze-drying stages. After this stage the matrix was compressed at 4 tons for 3 mins and placed in SGF for 2 hours and then in SIF until dissolved. The BCG viability dropped to x106 cfu/ml. There is potential to develop it further for oral delivery of BCG vaccine.
Resumo:
Bovine tuberculosis (bTB) caused by infection with Mycobacterium bovis is causing considerable economic loss to farmers and Government in the United Kingdom as its incidence is increasing. Efforts to control bTB in the UK are hampered by the infection in Eurasian badgers (Metes metes) that represent a wildlife reservoir and source of recurrent M. bovis exposure to cattle. Vaccination of badgers with the human TB vaccine, M. bovis Bacille Calmette-Guerin (BCG), in oral bait represents a possible disease control tool and holds the best prospect for reaching badger populations over a wide geographical area. Using mouse and guinea pig models, we evaluated the immunogenicity and protective efficacy, respectively, of candidate badger oral vaccines based on formulation of BCG in lipid matrix, alginate beads, or a novel microcapsular hybrid of both lipid and alginate. Two different oral doses of BCG were evaluated in each formulation for their protective efficacy in guinea pigs, while a single dose was evaluated in mice. In mice, significant immune responses (based on lymphocyte proliferation and expression of IFN-gamma) were only seen with the lipid matrix and the lipid in alginate microcapsular formulation, corresponding to the isolation of viable BCG from alimentary tract lymph nodes. In guinea pigs, only BCG formulated in lipid matrix conferred protection to the spleen and lungs following aerosol route challenge with M. bovis. Protection was seen with delivery doses in the range 10(6)-10(7) CFU, although this was more consistent in the spleen at the higher dose. No protection in terms of organ CFU was seen with BCG administered in alginate beads or in lipid in alginate microcapsules, although 10(7) in the latter formulation conferred protection in terms of increasing body weight after challenge and a smaller lung to body weight ratio at necropsy. These results highlight the potential for lipid, rather than alginate, -based vaccine formulations as suitable delivery vehicles for an oral BCG vaccine in badgers.
Resumo:
The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.
Resumo:
The perspectives for a Chagas Disease vaccine 30 years ago and today are compared. Antigens and adjuvants have improved, but logistic problems remain the same. Sterilizing vaccines have not been produced and animal models for chronic Chagas have not been developed. Vector control has been successful and Chagas incidence has come to a halt. We do not have a population candidate to vaccination now in Brazil. And if we had, we would not know how to evaluate the success of vaccination in a short time period. A vaccine may not seem important at the moment. However, scientific reasons and incertitudes about the future recommend that a search for a vaccine be continued.
Resumo:
The aim of this study was to evaluate the inflammatory response kinetics after experimental inoculation with BCG in the primitive Arius sp. fish. The BCG was applied through the intramuscular injection in the caudal peduncular region, and the samples were collected for the analyses at days 1, 3, 7, 14, 21, and 33 post-injection. Acute phase inflammatory infiltrate was characterized by the predominant mononuclear cells, intersticial edema, and muscular tissue necrosis. As the inflammatory response evolved, a large number of multinuclear giant cells were formed containing the BCG. These giant cells were positive for the S100 protein at the histochemical analysis, which demonstrate the macrofage activity, confirmed by the ultra-structural analysis showing the lack of the cytoplasmic membrane enveloping the many nuclei within the giant cell. These results led to the conclusion that Arius sp. fish injected with the BCG showed a difuse inflammatory response characterized by a large number of mononuclear cells, absence of granuloma formation, and predominant giant cells.
Resumo:
We estimated the sensitivity, i.e., the proportion of all cases of adverse events following immunization (AEFIs) reported to the Brazilian passive surveillance for adverse events following immunization (PSAEFI) with the diphtheria-tetanus-whole-cell pertussis-Haemophilus influenzae type b (DTwP-Hib) vaccine, as well as investigating factors associated with AEFIs reporting. During 2003–2004, 8303 AEFIs associated with DTwP-Hib were reported; hypotonic-hyporesponsive episodes (HHEs), fever and convulsions being the most common. Cure without sequel was achieved in 98.4 per cent of the cases. The mean sensitivity of the PSAEFI was 22.3 per cent and 31.6 per cent, respectively, for HHE and convulsions, varying widely among states. Reporting rates correlated positively with the Human Development Index and coverage of adequate prenatal care, correlating negatively with infant mortality rates. Quality of life indicators and the degree of organization of health services are associated with greater PSAEFI sensitivity. In addition to consistently describing the principal AEFIs, PSAEFI showed the DTwP/Hib vaccine to be safe and allayed public fears related to its use
Resumo:
Background: Since successful treatment of superficial bladder cancer with BCG requires proper induction of Th1 immunity, we have developed a rBCG-S1PT strain that induced a stronger cellular immune response than BCG. This preclinical study was designed to compare the modulatory effects of BCG and rBCG-S1PT on bladder TNF-alpha and IL-10 expression and to evaluate antitumour activity. Methods: For Experiment I, the MB49 bladder cancer cell line was used in C57BL/6 mice. Chemical cauterization of the bladder was performed to promote intravesical tumor implantation. Mice were treated by intravesical instillation with BCG, rBCG-S1PT or PBS once a week for four weeks. After 35 days the bladders were removed and weighed. TNF-
Resumo:
HIV-infected patients are at risk for vaccine-preventable infections. The Brazilian National Immunization Program provided recommendations for this population. However, the vaccine coverage reached by this program is unknown. This study aimed at evaluating the vaccine coverage of HIV-infected adults followed at Hospital das Clinicas, University of Sao Paulo School of Medicine. Data were collected on age, gender, mode of HIV transmission, Centers for Disease Classification 1993 classification (CDC/93), antiretrovirals, CD4 count, HIV viral load, and immunization charts, from April 2003 to August 2004. We interviewed 144 randomly selected patients, 74% male; mean age, 39.95 years; CDC classification: A, 40.6%; B, 19.6%; and C, 39.9%. Most of patients were undergoing highly active antiretroviral therapy (HAART; 86.8%). Mean CD4 count 442.6 cells/mm(3). Viral load less than 400 copies per milliliter in 59.4% of patients. Only 36.1% of patients were adequately immunized for diphtheria/tetanus, 54.9% for pneumococcus, 24.3% for flu, and 76.9% for hepatitis B. In relation to live attenuated vaccines, 5 patients received measles, mumps, and rubella vaccine and 7 patients yellow fever vaccine. Two patients were vaccinated against yellow fever despite CD4 less than 200 cell/mm(3). We verified poor vaccine coverage in HIV-infected patients. Vaccination campaigns and incorporation of vaccine rooms in sexually transmitted disease (STD)/AIDS clinics could improve this situation.