247 resultados para Aza-propargylglycine
Resumo:
The kainoids are a class of non-proteinogenic pyrrolidine dicarboxylates that exhibit both excitatory and excitotoxic activities. These activities are a result of the ability of the kainoids to act as glutamate receptor agonists by activating ionotropic glutamate receptors. The parent of this group of compounds is α-kainic acid. Kainic acid is isolated from the seaweed Diginea simplex and has been used in Asian countries as a treatment for intestinal worms in children. In addition it is used extensively by neuropharmacologists for the study of glutamate receptors. Several years ago, the world's sole supplier of kainic acid discontinued this product. Since that time, other sources have appeared, however, the price of kainic acid remains significantly higher than it once was. We have thus been working on synthesizing aza analogs of kainoids which would be less costly but potentially potent alternatives to kainic acid via the dipolar cycloadditions of diazoalkanes with trans diethyl glutaconate. These 1, 3-dipolar cycloadditions yielded 2-pyrazolines or pyrazoles. The 2-pyrazolines may be precursors to aza analogs of kainoids. The regioselectivity of these 1, 3-dipolar cycloadditions and isomerization of the 1-pyrazolines to 2-pyrazolines was evaluated. Reductions of the 2-pyrazolines yielded aza analogs of kainoids.^ TMS diazomethane, due to the commercial availability, has been frequently used as a synthetic reagent in 1, 3-dipolar cycloadditions, particularly in the preparation of novel amino acid analogs. A survey of the recent literature indicates that the regioselectivity of the double bond isomerization of TMS substituted 1-pyrazolines is variable and at first glance, unpredictable. In an effort to develop a mechanistic rational for the isomerization which could account for the products obtained, a systematic survey of dipolar cycloadditions between TMS diazomethane and α, β-unsaturated dipolarophiles was undertaken. It was suggested that the steric demand of the dipolarophiles had a profound effect on both the relative stereochemistry of dipolar cycloaddition reactions of TMSCHN2 and the preferred direction of isomerization of the resulting 1-pyrazoline.^
Resumo:
The kainate receptors are one of the three major groups of ionotropic glutamate receptors in the mammalian central nervous system. They are so named after their most potent agonist, kainic acid (KA), a natural product isolated from the seaweed Diginea simplex. This compound shows both neuroexcitatory and excitotoxic activities, and is an important pharmacological tool for neurophysiological studies. We predict that the more synthetically accessible aza analogues of kainic acid, could act as functional mimics of KA. These could be produced by the 1,3-dipolar cycloaddition of diazoalkanes with trans glutaconate esters. ^ 1,3-Dipolar cycloadditions have been shown to produce 1-pyrazolines that isomerize into 2-pyrazolines. The 1- and 2-pyrazolines can be precursors to aza analogs of kainoids. The regioselectivity, relative stereochemistry and isomerization of the 1-pyrazolines into 2-pyrazolines have been evaluated. Reductions of the 1- and 2-pyrazolines produced aza analogs of kainoids. TMS diazomethane was used as the dipole in 1,3-dipolar cycloaddition reactions leading to aza KA analogs via 2-pyrazolines. A systematic study of cycloaddition-isomerization processes involving TMS-diazomethane and various α, β-unsaturated dipolarophiles has been undertaken. 1H-NMR monitoring of the reaction mixture compositions during the cycloaddition reaction revealed evidence of retro-dipolar cycloaddition processes. Faster formation of 4,5- trans-1-pyrazoline at the beginning of the reaction and subsequent isomerization of this product into 4,5-cis-1-pyrazoline via a retro-dipolar cycloaddition has been observed. Increased reaction time and/or reaction temperature preferentially caused the irreversible isomerization of 4,5-cis-1-pyrazoline into 4,5-cis-2-pyrazoline, which led to high yields of 4,5-cis-2-pyrazolines in the overall process. ^ Two syntheses of the 5-unsubstituted aza-kainic acid have been performed; first, via the reduction of the TMS-eliminated 2-pyrazoline from TMS diazomethane; second by the direct reduction of 1-pyrazoline with Hg/Al-amalgam. 5-Phenyl aza-kainic acid has been produced by direct reduction of 1-pyrazoline, obtained in the reaction of phenyldiazomethane and dibenzyl glutaconate, with Hg/Al-amalgam. ^ Current responses to aza kainate analogs in Aplysia whole cell buccal ganglia indicate potent neuroexcitatory activity. The repetitive exposure of neuronal cells to the 5-unsubstituted aza-kainic acid led to non-desensitizing current responses, showing both binding affinity and neuronal ion-channel activation by the synthesized agonist compound. ^
Resumo:
Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence, critical for establishing infection. There are two major pathways of QS systems. Type 1 is species specific or intra-species communication in which N-acylhomoserine lactones (Gram-negative bacteria) or oligopeptides (Gram-positive bacteria) are employed as signaling molecules (autoinducer one). Type 2 is inter-species communication in which S-4,5-dihydroxy-2,3-pentanedione (DPD) or its borate esters are used as signaling molecules. The DPD is biosynthesized by LuxS enzyme from S-ribosylhomocysteine (SRH). Recent increase in prevalence of bacterial strains resistant to antibiotics emphasizes the need for the development of new generation of antibacterial agents. Interruption of QS by small molecules is one of the viable options as it does not affect bacterial growth but only virulence, leading to less incidence of microbial resistance. Thus, in this work, inhibitors of both N-acylhomoserine lactone (AHL) mediated intra-species and LuxS enzyme, involved in inter-species QS are targeted. The γ-lactam and their reduced cyclic azahemiacetal analogs, bearing the additional alkylthiomethyl substituent, were designed and synthesized targeting AHL mediated QS systems in P. aeruginosa and Vibrio harveyi. The γ-lactams with nonylthio or dodecylthio chains acted as inhibitors of las signaling in P. aeruginosa with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent were found to strongly inhibit both las and rhl signaling in P. aeruginosa at higher concentrations. However, lactam and their azahemiacetal analogs were found to be inactive in V. harveyi QS systems. The 4-aza-S-ribosyl-L-homocysteine (4-aza-SRH) analogs and 2-deoxy-2-substituted-S-ribosyl-L-homocysteine analogs were designed and synthesized targeting Bacillus subtilis LuxS enzyme. The 4-aza-SRH analogs in which oxygen in ribose ring is replaced by nitrogen were further modified at anomeric position to produce pyrrolidine, lactam, nitrone, imine and hemiaminal analogs. Pyrrolidine and lactam analogs which lack anomeric hydroxyl, acted as competitive inhibitors of LuxS enzyme with KI value of 49 and 37 µM respectively. The 2,3-dideoxy lactam analogs were devoid of activity. Such findings attested the significance of hydroxyl groups for LuxS binding and activity. Hemiaminal analog of SRH was found to be a time-dependent inhibitor with IC50 value of 60 µM.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
We report first-principles calculations on the electronic and structural properties of chemically functionalized adamantane molecules, either in isolated or crystalline forms. Boron and nitrogen functionalized molecules, aza-, tetra-aza-, bora-, and tetra-bora-adamantane, were found to be very stable in terms of energetics, consistent with available experimental data. Additionally, a hypothetical molecular crystal in a zincblende structure, involving the pair tetra-bora-adamantane and tetra-aza-adamantane, was investigated. This molecular crystal presented a direct and large electronic band gap and a bulk modulus of 20 GPa. The viability of using those functionalized molecules as fundamental building blocks for nanostructure self-assembly is discussed.
Resumo:
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease affecting the epithelium of the oral cavity, pharynx and larynx. Conditions of most patients are diagnosed at late stages of the disease, and no sensitive and specific predictors of aggressive behavior have been identified yet. Therefore, early detection and prognostic biomarkers are highly desirable for a more rational management of the disease. Hypermethylation of CpG islands is one of the most important epigenetic mechanisms that leads to gene silencing in tumors and has been extensively used for the identification of biomarkers. In this study, we combined rapid subtractive hybridization and microarray analysis in a hierarchical manner to select genes that are putatively reactivated by the demethylating agent 5-aza-2'-deoxycytidine (5Aza-dC) in HNSCC cell lines (FaDu, UM-SCC-14A, UM-SCC-17A, UM-SCC-38A). This combined analysis identified 78 genes, 35 of which were reactivated in at least 2 cell lines and harbored a CpG island at their 5' region. Reactivation of 3 of these 35 genes (CRABP2, MX1, and SLC15A3) was confirmed by quantitative real-time polymerase chain reaction (PCR; fold change, >= 3). Bisulfite sequencing of their CpG islands revealed that they are indeed differentially methylated in the HNSCC cell lines. Using methylation-specific PCR, we detected a higher frequency of CRABP2 (58.1% for region 1) and MX1 (46.3%) hypermethylation in primary HNSCC when compared with lymphocytes from healthy individuals. Finally, absence of the CRABP2 protein was associated with decreased disease-free survival rates, supporting a potential use of CRABP2 expression as a prognostic biomarker for HNSCC patients.
Resumo:
The potentially sexidentate polyamine macrocycle 15-methyl-1,4,7,10,13-pentaazacyclohexadecan-15-amine (1) was prepared via a copper(II)-templated route from 3,6,9-triazaundecan-1,ll-diamine, formaldehyde and nitroethane which first formed the copper(II) complex of the macrocycle 15-methyl-15-nitro-1,4,7,10,13-pentaazacyclohexadecane (2), reduced subsequently with zinc and aqueous acid to yield 1. The hexaamine 1, with five secondary amine groups in the macrocyclic ring and one pendant primary amine group, forms inert sexidentate octahedral complexes with cobalt(III), chromium(III) and iron(III). An X-ray structure of [Co(1)](ClO4)(3) defines the distorted octahedron of the complex cation and shows it is a symmetrical isomer with all nitrogens bound and the central aza group trans to the pendant primary amine group. The [M(1)](3+) ions are all stable indefinitely in aqueous solution and exhibit spectra consistent with MN6 d(3) (Cr), low-spin d(5) (Fe) and low-spin d(6) (Co) electronic ground states. For each complex, a reversible M(III/II) redox couple is observed. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Field trials on upland cotton (Gossypium hirstum L.) during its reproductive phase were used to assess the toxicity of several biorational pesticides and chemicals to Helicoverpa armigera (Hubner) and H. puntigera Wallengren, as well as major predators at Dalby, Queensland, Australia. Moderate rate-dependent control was obtained in plots treated with neem (Azadirachta indica A. Juss) seed extract-azadirachtin (Aza) at rates of 30, 60 and 90 g/ha. Plots treated with Talstar EC (bifenthrin) applications achieved the best results, followed by treatment with alternation of chemicals (methomyl, bifenthrin, thiodicarb and endosulfan) and biorational insecticides (neem oil, azadirachtin and Bacillus thuringiensis kurstaki var. Berliner). Predators, including lady beetles, lacewings, spiders and predatory bugs, were insensitive to Aza, tooseendanin (Tsdn) and BT applications. In contrast, chemicals were very destructive of predators. All treatments provided some protection from infestation of H. armigera and H. puntigera. The effect of Aza on Helicoverpa spp. was reflected in a relatively higher yield of seed cotton harvested from Aza-treated plots compared with the control, but chemical control achieved significantly higher yields than any other treatment.
Resumo:
Background: There are few studies on HIV subtypes and primary and secondary antiretroviral drug resistance (ADR) in community-recruited samples in Brazil. We analyzed HIV clade diversity and prevalence of mutations associated with ADR in men who have sex with men in all five regions of Brazil. Methods: Using respondent-driven sampling, we recruited 3515 men who have sex with men in nine cities: 299 (9.5%) were HIV-positive; 143 subjects had adequate genotyping and epidemiologic data. Forty-four (30.8%) subjects were antiretroviral therapy-experienced (AE) and 99 (69.2%) antiretroviral therapy-naive (AN). We sequenced the reverse transcriptase and protease regions of the virus and analyzed them for drug resistant mutations using World Health Organization guidelines. Results: The most common subtypes were B (81.8%), C (7.7%), and recombinant forms (6.9%). The overall prevalence of primary ADR resistance was 21.4% (i.e. among the AN) and secondary ADR was 35.8% (i.e. among the AE). The prevalence of resistance to protease inhibitors was 3.9% (AN) and 4.4% (AE); to nucleoside reverse transcriptase inhibitors 15.0% (AN) and 31.0% (AE) and to nonnucleoside reverse transcriptase inhibitors 5.5% (AN) and 13.2% (AE). The most common resistance mutation for nucleoside reverse transcriptase inhibitors was 184V (17 cases) and for nonnucleoside reverse transcriptase inhibitors 103N (16 cases). Conclusions: Our data suggest a high level of both primary and secondary ADR in men who have sex with men in Brazil. Additional studies are needed to identify the correlates and causes of antiretroviral therapy resistance to limit the development of resistance among those in care and the transmission of resistant strains in the wider epidemic.
Resumo:
Aims: Claudins, a large family of essential tight junction (TJ) proteins, are abnormally regulated in human carcinomas, especially claudin-7. The aim of this study was to investigate claudin-7 expression and alterations in oral squamous cell carcinoma (OSCC). Methods and results: Expression of claudin-7 was analysed in 132 cases of OSCC organized in a tissue microarray. Claudin-7 mRNA transcript was evaluated using real-time polymerase chain reaction and the methylation status of the promoter was also assessed. Claudin-7 was negative in 58.3% of the cases. Loss of claudin-7 protein expression was associated with recurrence (P = 0.019), tumour size (P = 0.014), clinical stage of OSCC (P = 0.055) and disease-free survival (P = 0.015). Down-regulation of the claudin-7 mRNA transcripts was observed in 78% of the cases, in accordance with immunoexpression. Analysis of the methylation status of the promoter region of claudin-7 revealed that treatment of O28 cells (that did not express claudin-7 mRNA transcripts) with 5-Aza-2`-Deoxycytidine (5-Aza-dC) led to the re-expression of claudin-7 mRNA transcript. Conclusion: Loss of claudin-7 expression is associated with important subcellular processes in OSCC with impact on clinical parameters.
Resumo:
Background: A growing body of evidence has revealed, the involvement of epigenetic alterations in the etiology of astrocytomas. In the present study, we aimed to evaluate the association of DNA methylation of histone deacetylase genes (HDAC) with the etiology of astrocytoma, and the implications for epigenetic therapy. Materials and Methods: Methylation of the HDAC4, HDAC5 and HDAC6 genes was assessed in 29 tumor samples (astrocytomas grades I, III, and IV) and in the glioblastoma cell lines U87, U251, U343, SF188, and T98G by methylation-specific quantitative PCR (MSED-qPCR). Results: Significantly increased methylation of the HDAC5 gene was observed in astrocytomas when compared to non-neoplastic brain samples (p=0.0007) and to glioblastomas cell lines (p=0.001). A heterogenic methylation pattern was evidenced when compared to the glioblastoma cell lines. Distinct effects on methylation and gene expression were observed after in vitro treatment of the different cell lines with decitabine. Conclusion: Our results suggest that abnormal methylation of HDAC genes is involved in the etiology of astrocytomas and indicate that loci-specific epigenetic interindividualities might be associated to the differential responses to treatment with decitabine.
Resumo:
In this study, we have addressed the role of H2S in modulating neutrophil migration in either innate (LPS-challenged naive mice) or adaptive (methylated BSA (mBSA)-challenged immunized mice) immune responses. Treatment of mice with H S synthesis inhibitors, DL-propargylglycine (PAG) or beta-cyanoalanine, reduced neutrophil migration induced by LPS or methylated BSA (mBSA) into the peritoneal cavity and by mBSA into the femur/tibial joint of immunized mice. This effect was associated with decreased leukocyte rolling, adhesion, and P-selectin and ICAM-1 expression on endothelium. Predictably, treatment of animals with the H2S donors, NaHS or Lawesson`s reagent, enhanced these parameters. Moreover, the NaHS enhancement of neutrophil migration was not observed in ICAM-1-deficient mice. Neither PAG nor NaHS treatment changed LPS-induced CD18 expression on neutrophils, nor did the LPS- and mBSA-induced release of neutrophil chemoattractant mediators TNF-alpha, keratinocyte-derived chemokine, and LTB4. Furthermore, in vitro MIP-2-induced neutrophil chemotaxis was inhibited by PAG and enhanced by NaHS treatments. Accordingly, MIP-2-induced CXCR2 internalization was enhanced by PAG and inhibited by NaHS treatments. Moreover, NaHS prevented MIP-2-induced CXCR2 desensitization. The PAG and NaHS effects correlated, respectively, with the enhancement and inhibition of MIP-2-induced G protein-coupled receptor kinase 2 expression. The effects of NaHS on neutrophil migration both in vivo and in vitro, together with CXCR2 internalization and G protein-coupled receptor kinase 2 expression were prevented by the ATP-sensitive potassium (K-ATP(+)) channel blocker, glybenclamide. Conversely, diazoxide, a K-ATP(+) channel opener, increased neutrophil migration in vivo. Together, our data suggest that during the inflammatory response, H`S augments neutrophil adhesion and locomotion, by a mechanism dependent on K-ATP(+) channels.
Resumo:
Rationale Recovering the neutrophil migration to the infectious focus improves survival in severe sepsis. Recently, we demonstrated that the cystathionine gamma-lyase (CSE)/hydrogen sulfide (H(2)S) pathway increased neutrophil recruitment to inflammatory focus during sterile inflammation. Objectives: To evaluate if H(2)S administration increases neutrophil migration to infectious focus and survival of mice. Methods. Sepsis was induced by cecal ligation and puncture (CLP) Measurements and Main Results. The pretreatments of mice with H2S donors (NaHS or Lawesson`s reagent) improved leukocyte rolling/adhesion in the mesenteric microcirculation as well as neutrophil migration. Consequently, bacteremia levels were reduced, hypotension and lung lesions were prevented, and the survival rate increased from approximately 13% to approximately 80% Even when treatment was delayed (6 h after CLP), a highly significant reduction in mortality compared with untreated mice was observed Moreover, H(2)S pretreatment prevented the down-regulation of CXCR2 and L-selectin and the up-regulation of CD11b and G protein-coupled receptor kinase 2 in neutrophils during sepsis. H(2)S also prevented the reduction of intercellular adhesion molecule-1 expression in the endothelium of the mesenteric microcirculation in severe sepsis Confirming the critical role of H(2)S on sepsis outcome, pretreatment with dl-propargylglycine (a CSE inhibitor) inhibited neutrophil migration to the infectious focus, enhanced lung lesions, and induced high mortality in mice subjected to nonsevere sepsis (from 0 to similar to 80%). The beneficial effects of H(2)S were blocked by glibenclamide (a ATP-dependent K(+) channel blocker). Conclusions: These results showed that H(2)S restores neutrophil migration to the infectious focus and improves survival outcome in severe sepsis by an ATP-dependent K(+) channel-dependent mechanism.