921 resultados para Axial compression
Resumo:
In this work, the mechanics of tubular hydroforming under various types of loading conditions is investigated. The main objective is to contrast the effects of prescribing fluid pressure or volume flow rate, in conjunction with axial displacement, on the stress and strain histories experienced by the tube and the process of bulging. To this end, axisymmetric finite element simulations of free hydroforming (without external die contact) of aluminium alloy tubes are carried out. Hill’s normally anisotropic yield theory along with material properties determined in a previous experimental study [A. Kulkarni, P. Biswas, R. Narasimhan, A. Luo, T. Stoughton, R. Mishra, A.K. Sachdev, An experimental and numerical study of necking initiation in aluminium alloy tubes during hydroforming, Int. J. Mech. Sci. 46 (2004) 1727–1746] are employed in the computations. It is found that while prescribed fluid pressure leads to highly non-proportional strain paths, specified fluid volume flow rate may result in almost proportional ones for the predominant portion of loading. The peak pressure increases with axial compression for the former, while the reverse trend applies under the latter. The implication of these results on failure by localized necking of the tube wall is addressed in a subsequent investigation.
Resumo:
This article presents a new method for acquiring three-dimensional (3-D) volumes of ultrasonic axial strain data. The method uses a mechanically-swept probe to sweep out a single volume while applying a continuously varying axial compression. Acquisition of a volume takes 15-20 s. A strain volume is then calculated by comparing frame pairs throughout the sequence. The method uses strain quality estimates to automatically pick out high quality frame pairs, and so does not require careful control of the axial compression. In a series of in vitro and in vivo experiments, we quantify the image quality of the new method and also assess its ease of use. Results are compared with those for the current best alternative, which calculates strain between two complete volumes. The volume pair approach can produce high quality data, but skillful scanning is required to acquire two volumes with appropriate relative strain. In the new method, the automatic quality-weighted selection of image pairs overcomes this difficulty and the method produces superior quality images with a relatively relaxed scanning technique.
Resumo:
A series of static and cyclic-static tri-axial compression tests under consolidated-undrained conditions are carried out to study the characteristics of post-cyclic strength of the undisturbed and the remolded samples of marine silty clay. It is found that the post-cyclic monotonic strength decreases if the cyclic strain or pore pressure is over a certain value. The maximum degradation is 10% for undisturbed samples while 70% for remolded ones. The relationship between normalized undrained shear strength and apparent overconsolidation ratio, which is determined by the excess pore pressure induced by cyclic loading, is also established. Static consolidated-undrained tests on overconsolidated remolded samples are also performed. It is proposed that the static consolidated-undrained tests may be substituted for the cyclic-static consolidated-undrained tests if the post-cyclic strength degradation of remolded silty clay is needed to be evaluated simply.
Resumo:
Six topics in incompressible, inviscid fluid flow involving vortex motion are presented. The stability of the unsteady flow field due to the vortex filament expanding under the influence of an axial compression is examined in the first chapter as a possible model of the vortex bursting observed in aircraft contrails. The filament with a stagnant core is found to be unstable to axisymmetric disturbances. For initial disturbances with the form of axisymmetric Kelvin waves, the filament with a uniformly rotating core is neutrally stable, but the compression causes the disturbance to undergo a rapid increase in amplitude. The time at which the increase occurs is, however, later than the observed bursting times, indicating the bursting phenomenon is not caused by this type of instability.
In the second and third chapters the stability of a steady vortex filament deformed by two-dimensional strain and shear flows, respectively, is examined. The steady deformations are in the plane of the vortex cross-section. Disturbances which deform the filament centerline into a wave which does not propagate along the filament are shown to be unstable and a method is described to calculate the wave number and corresponding growth rate of the amplified waves for a general distribution of vorticity in the vortex core.
In Chapter Four exact solutions are constructed for two-dimensional potential flow over a wing with a free ideal vortex standing over the wing. The loci of positions of the free vortex are found and the lift is calculated. It is found that the lift on the wing can be significantly increased by the free vortex.
The two-dimensional trajectories of an ideal vortex pair near an orifice are calculated in Chapter Five. Three geometries are examined, and the criteria for the vortices to travel away from the orifice are determined.
Finally, Chapter Six reproduces completely the paper, "Structure of a linear array of hollow vortices of finite cross-section," co-authored with G. R. Baker and P. G. Saffman. Free streamline theory is employed to construct an exact steady solution for a linear array of hollow, or stagnant cored vortices. If each vortex has area A and the separation is L, then there are two possible shapes if A^(1/2)/L is less than 0.38 and none if it is larger. The stability of the shapes to two-dimensional, periodic and symmetric disturbances is considered for hollow vortices. The more deformed of the two possible shapes is found to be unstable, while the less deformed shape is stable.
Resumo:
Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.
The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.
A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.
High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.
Resumo:
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century.
This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells.
Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression with superior mass efficiency.
An efficient computational method for the buckling analysis of corrugated and stiffened cylindrical shells subject to axial compression has been developed in this thesis. This method modifies the traditional Bloch wave method based on the stiffness matrix method of rotationally periodic structures. A highly efficient algorithm has been developed to implement the modified Bloch wave method. This method is applied in buckling analyses of a series of corrugated composite cylindrical shells and a large-scale orthogonally stiffened aluminum cylindrical shell. Numerical examples show that the modified Bloch wave method can achieve very high accuracy and require much less computational time than linear and nonlinear analyses of detailed full finite element models.
This thesis presents parametric studies on a series of externally pressurized pseudo-spherical shells, i.e., polyhedral shells, including icosahedron, geodesic shells, and triambic icosahedra. Several optimization methods have been developed to further improve the performance of pseudo-spherical shells under external pressure. It has been shown that the buckling pressures of the shell designs obtained from the optimizations are much higher than the spherical shells and not sensitive to imperfections.
Resumo:
The catastrophic failure of heterogeneous brittle materials under impact loading is not fully understood. To describe the catastrophic failure behavior of heterogeneous brittle materials under impact loading, an elasto-statistical-brittle (ESB) model is proposed in this paper. The ESB model characterizes the disordered inhomogeneity of material at mesoscopic scale with the statistical description of the shear strength of mesoscopic units. If the applied shear stress reaches the strength, the mesoscopic unit fails, which causes degradation in the shear modulus of the material. With a simplified ESB model, the failure wave in brittle material under uni-axial compression is analyzed. It is shown that the failure wave is a wave of strain or particle velocity resulted from the catastrophic fracture in an elastically stressed brittle media when the impact velocity reaches a critical value. In addition, the failure wave causes an increase in the rear surface velocity, which agrees well with experimental observations. The critical condition to generate failure wave and the speed of failure wave are also obtained.
Resumo:
The aim of the study was to use a computational and experimental approach to evaluate, compare and predict the ability of calcium phosphate (CaP) and poly (methyl methacrylate) (PMMA) augmentation cements to restore mechanical stability to traumatically fractured vertebrae, following a vertebroplasty procedure. Traumatic fractures (n = 17) were generated in a series of porcine vertebrae using a drop-weight method. The fractured vertebrae were imaged using μCT and tested under axial compression. Twelve of the fractured vertebrae were randomly selected to undergo a vertebroplasty procedure using either a PMMA (n = 6) or a CaP cement variation (n = 6). The specimens were imaged using μCT and re-tested. Finite element models of the fractured and augmented vertebrae were generated from the μCT data and used to compare the effect of fracture void fill with augmented specimen stiffness. Significant increases (p <0.05) in failure load were found for both of the augmented specimen groups compared to the fractured group. The experimental and computational results indicated that neither the CaP cement nor PMMA cement could completely restore the vertebral mechanical behavior to the intact level. The effectiveness of the procedure appeared to be more influenced by the volume of fracture filled rather than by the mechanical properties of the cement itself.
Resumo:
Existing studies have shown conclusively that the measured fibre reinforced polymer (FRP) rupture strain in FRP wrapped concrete columns is usually significantly smaller than the rupture strain obtained from flat coupon tests. One of the main causes for this phenomenon is the existence of geometrical discontinuities at both ends of the FRP sheets. This study proposes a new strengthening method in which continuous FRP spiral wrapping is used to eliminate strain concentrations due to the geometrical discontinuities and thus increase the FRP rupture strain at column failure. The effect of the spiral angle of FRP on the FRP rupture strain in FRP wrapped specimens was experimentally investigated. The test results indicate that the spiral wrapping with a small angle with respect to the column circumference can significantly increase the strain efficiency of FRP and thus enhance the axial compression capacity of the strengthened cylinders.
Resumo:
This paper describes the simulation of representative aircraft wing stiffened panels under axial compression loading, to determine the effects of varying the manufacturing shape and assembly joining methods on stiffened panel performance. T-stiffened and Z-stiffened panels are modelled in Abaqus simulating integral, co-cured and mechanically fastened joints. The panels are subject to an edge compressive displacement along the stiffener axis until failure and the ultimate failure load and buckling performance is assessed for each. Integral panels consistently offer the highest performance. Co-cured panels demonstrate reduced performance (3-5% reduction in ultimate load relative to integral) caused by localised cohesive failure and skin-stiffener separation. The mechanically fastened panels are consistently the weakest joint (19-25% reduction in ultimate load relative to integral) caused primarily by inter-rivet buckling between fasteners
Resumo:
O presente projeto de investigação em Engenharia Civil é construído em torno das necessidades atuais expressas pelos setores da construção e obras públicas em fundações. Em colaboração com a empresa GEO este trabalho pretende dar resposta em tempo útil aos empreiteiros, pondo o conhecimento científico ao serviço da indústria, colmatando a escassez de investigação académica que se verifica neste domínio. Esta investigação, à qual se associou a empresa BRASFOND, recorre ao estudo de ensaios de carga estática à compressão realizados no Brasil, segundo a NBR 12131 (2005) e NBR 12131 (2006). Assim, para estudar o desempenho de polímeros aplicados na estabilização de solos em fundações, foram analisados 6 ensaios de carga realizados em obras de intervenção da empresa GEO, disponibilizados pela empresa BRASFOND. Os ensaios de carga verticais estáticos de compressão axial foram realizados em estacas de 3 obras, nomeadamente a construção de uma central termoelétrica, em 2009, e de dois edifícios, em 2010. O projeto de fundações da central termoelétrica assentou na execução de estacas com polímeros, com 1270 estacas moldadas “in loco” com 1 000 mm de diâmetro e profundidade variável de 10 m a 18 m, em solos moles e pouco compactos de 8 m a 9 m de espessura, encastradas até 3 m sobre um maciço Gnaisse medianamente alterado (W3). Dos ensaios de carga realizados nesta obra, foram alvo deste estudo a análise dos primeiros 4 disponibilizados pela empresa. Os valores estimados por métodos semi-empíricos da capacidade resistente das estacas, considerando a recuperação da rocha nos trechos encastrados, foram comparados com a carga resistente última à compressão obtida através do ensaio de carga. O projeto de fundações de dois edifícios de elevado número de andares (cerca de 30) no litoral do Estado de São Paulo, em Santos, assentou na execução de fundações indiretas em solos moles a muito moles, com estacas de grandes dimensões moldadas com recurso a polímeros. Para atestar a qualidade das estacas, de forma a avaliar o comportamento carga versus assentamento e estimar as características da capacidade de carga, procedeu-se à execução de dois ensaios de carga estática à compressão, um dos quais instrumentado em profundidade. Os valores estimados por métodos semi-empíricos da capacidade resistente das estacas foram comparados com a carga resistente última à compressão obtida através do ensaio de carga. Para além deste estudo se revestir de interesse académico e empresarial, o contexto inerente à aplicação de polímeros em fundações é relevante para a prática pedagógica. Assim, este projeto envolve também uma componente educacional, esta última implementada numa escola do ensino básico e secundário da região centro do país.
Resumo:
A reciclagem de resíduos apresenta-se como uma alternativa adequada com relação à preservação dos recursos naturais e do meio ambiente. As escórias de aciaria são resíduos siderúrgicos originados na fabricação do aço, e são geradas em grandes quantidades. Estes resíduos são estocados nos pátios siderúrgicos, onde permanecem, na sua maioria, sem qualquer destino. Normalmente, as escórias de aciaria são volumetricamente instáveis, apresentando características expansivas, e por esta razão, a aplicação das mesmas em materiais de construção torna-se restrita. Esta pesquisa tem como objetivo estudar a viabilidade técnica do uso das escórias de aciaria LD como adição em cimentos, propondo um método de estabilização por meio de granulação por resfriamento brusco destas escórias, buscando, desta forma, a eliminação do fenômeno da expansão, e visando a melhoria das características destes resíduos. No processo de estabilização, a escória líquida foi granulada em uma usina siderúrgica. Estudos complementares de granulação foram realizados nos laboratórios da UFRGS, empregando-se escórias refundidas. A granulação por resfriamento brusco favoreceu a redução do CaOlivre, a eliminação do MgO na forma de periclásio, e a eliminação do bC2S das escórias, considerados agentes causadores da expansão. No entanto, a elevada basicidade da escória LD dificulta a formação da estrutura vítrea e a separação da fração metálica após o resfriamento brusco. Foram realizados ensaios de expansão das escórias, atividade pozolânica, e resistência mecânica de argamassas com escórias granuladas. O resfriamento brusco proporcionou a eliminação da expansão e o desenvolvimento das propriedades pozolânicas/cimentícias da escória granulada. Como adição em cimentos, do ponto de vista da resistência mecânica, as argamassas compostas com escórias granuladas e clínquer apresentaram níveis de resistência à compressão axial compatíveis com as especificações referentes ao cimento Portland composto, apesar destes resultados serem inferiores aos obtidos para as argamassas de referência.
Resumo:
OBJETIVO: Investigar as repercussões clínicas, biomecânicas e histomorfométricas do zoledronato no tratamento da osteoporose umeral em ratas osteoporóticas. MÉTODOS: Analisou-se, prospectivamente, 40 ratas (Rattus novergicus albinus). Com 60 dias de vida, foram aleatorizadas em dois grupos de acordo com o procedimento cirúrgico: ooforectomia bilateral (O) (n=20) e pseudo-cirurgia (P) (n=20). Após trinta dias, os animais foram novamente randomizados, de acordo com a administração de 0,1mg/kg de zoledronato (AZ) ou água destilada (AD): OAZ (n=10), OAD (n=10), PAZ (n=10) e PAD (n=10). Após doze meses, os animais foram eutanasiados e seus úmeros retirados. Clinicamente considerou-se o peso dos animais; biomecanicamente foram realizados ensaios compressivos e histomorfometricamente foi determinada a área trabecular óssea. RESULTADOS: Os grupos O tiveram um aumento de peso maior que os grupos P (p=0,005). Os grupos com zoledronato suportaram maior carga máxima que os grupos com água destilada (p=0,02). Nos grupos com zoledronato verificou-se o aumento da área trabecular óssea quando comparados aos grupos com água destilada (p=0,001). Houve correlação positiva entre a área trabecular e a carga máxima (p=0,04; r=0,95). CONCLUSÃO: O zoledronato não influiu no peso dos animais. Os resultados mostraram o aumento da resistência óssea umeral e da área trabecular óssea.
Resumo:
Este trabalho analisa o comportamento colapsível de um solo tropical arenoso inundado com diferentes fluidos de saturação que constituem o esgoto doméstico. Para tal análise, foram levados em consideração parâmetros físicos e químicos e aspectos estruturais do solo no âmbito do fenômeno da colapsibilidade dos solos, assim como as principais características dos fluidos de inundação de água destilada, esgoto doméstico e algumas soluções à base de substâncias que compõem os esgotos e as deformações axiais do solo a um metro de profundidade em ensaios edométricos. As propriedades físicas e químicas dos fluidos de inundação e dos solos, bem como a combinação entre tais propriedades, desempenham relevante papel na compreensão do fenômeno do colapso, mostrando que a sua ocorrência não pode ser atribuída a um ou outro parâmetro do solo ou do fluido isoladamente.
Resumo:
The purpose of this paper is to study the mechanical behavior of concrete blocks and prisms when performing axial compression tests within the Brazilian base of knowledge, intending to foment data of this kind for a world-based network. The blocks were built using five different mixtures in which the quantity of cement and the compacting ratio (density) were varied (during the fabrication process). The three-course-high prisms were assembled using 1 cm (0.39 in.) thick full-bedded joints, always trying to leave the mortar's characteristics constant. The axial compression tests were conducted according to Brazilian practice code recommendations, because most of these standards are very similar to international practice codes. The compressive strength, strains, and rupture form of each mixture studied were recorded. Attempts were made to correlate the strength, efficiency ratio (block strength/prism strength) of the prisms, strains, and rupture form; with the quantity of cement and compacting ratio. The data are presented in tables and figures, and the obtained results are discussed throughout the text. Copyright © 2007, American Concrete Institute. All rights reserved.