583 resultados para Autotrophic Denitrification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potential denitrification rates were measured using the acetylene block method, in sediments collected from streams in the sub-tropical, south-east Queensland region of Australia. Our aim was to estimate how much nitrogen could be removed from lotic systems by denitrification at the regional scale. Denitrification measured at 65 sites in August and September from a catchment of 22700 km(2) was extrapolated to all streams and rivers in the region based on the sediment area available for denitrification. Denitrification rates ranged between 4 and 950 mumol N m(-2) h(-1), with most sites having rates below 150 mumol N m(-2) h(-1). Based on these results, the current study estimates that a total of 305 t of nitrogen could be denitrified per year from all streams and rivers in the region, representing 6% of the total annual nitrogen load from surrounding land use. During baseflow conditions, when nitrogen loads to streams are low, the proportion of nitrogen removed through denitrification would be substantially higher, in some cases removing 100% of the nitrogen load. It is proposed that denitrification is an important process maintaining low concentrations of dissolved inorganic nitrogen under baseflow conditions and is therefore likely to enhance nitrogen limitation of primary production in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N-2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen.-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO3- accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently described process of simultaneous nitrification, denitrification and phosphorus removal (SNDPR) has a great potential to save capital and operating costs for wastewater treatment plants. However, the presence of glycogen-accumulating organisms (GAOs) and the accumulation of nitrous oxide (N2O) can severely compromise the advantages of this process. In this study, these two issues were investigated using a lab-scale sequencing batch reactor performing SNDPR over a 5-month period. The reactor was highly enriched in polyphosphate-accumulating organisms (PAOs) and GAOs representing around 70% of the total microbial community. PAOs were the dominant population at all times and their abundance increased, while GAOs population decreased over the study period. Anoxic batch tests demonstrated that GAOs rather than denitrifying PAOs were responsible for denitrification. NO accumulated from denitrification and more than half of the nitrogen supplied in a reactor cycle was released into the atmosphere as NO. After mixing SNDPR sludge with other denitrifying sludge, N2O present in the bulk liquid was reduced immediately if external carbon was added. We therefore suggest that the N2O accumulation observed in the SNDPR reactor is an artefact of the low microbial diversity facilitated by the use of synthetic wastewater with only a single carbon source. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denitrification is a microbially-mediated process that converts nitrate (NO3-) to dinitrogen (N2) gas and has implications for soil fertility, climate change, and water quality. Using PCR, qPCR, and T-RFLP, the effects of environmental drivers and land management on the abundance and composition of functional genes were investigated. Environmental variables affecting gene abundance were soil type, soil depth, nitrogen concentrations, soil moisture, and pH, although each gene was unique in its spatial distribution and controlling factors. The inclusion of microbial variables, specifically genotype and gene abundance, improved denitrification models and highlights the benefit of including microbial data in modeling denitrification. Along with some evidence of niche selection, I show that nirS is a good predictor of denitrification enzyme activity (DEA) and N2O:N2 ratio, especially in alkaline and wetland soils. nirK was correlated to N2O production and became a stronger predictor of DEA in acidic soils, indicating that nirK and nirS are not ecologically redundant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Microbiana, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-draining bioretention systems commonly demonstrate poor nitrate removal. In this study, column tests verified the necessity of a permanently saturated zone to target nitrate removal via denitrification. Experiments determined a first-order denitrification rate constant of 0.0011 min-1 specific to Willow Oak woodchip media. A 2.6-day retention time reduced 3.0 mgN/L to below 0.05 mg-N/L. During simulated storm events, hydraulic retention time may be used as a predictive measurement of nitrate fate and removal. A minimum 4.0 hour retention time was necessary for in-storm denitrification defined by a minimum 20% nitrate removal. Additional environmental parameters, e.g., pH, temperature, oxidation-reduction potential, and dissolved oxygen, affect denitrification rate and response, but macroscale measurements may not be an accurate depiction of denitrifying biofilm conditions. A simple model was developed to predict annual bioretention nitrate performance. Novel bioretention design should incorporate bowl storage and large subsurface denitrifying zones to maximize treatment volume and contact time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yacon, Smallanthus sonchifolius, an Andean species. is a rich source of dictetíc oligofructans with low glucose content. proteins and phenolic compounds. These constituents have shown efficacy in the prevention of diet-related ehronic diseases, including gastroin-testinal disorders and diabetes |1,2|. Yacon is part of a research program at the National Center for Natural Products Research (NCNPR) and University of Mississippi Field Station to develop new alternative root crops for Mississippi while attempting to im-prove the diet of low incorne families. Yacon can be easily propa-gated by cultings. Virus and nematode infections have been re-ported on plants propagated by cuttings in Brazil. a country that hás adopted Yacon as specialty crop [3|. We have developed two culture systems. autotrophic and heterotrophic, to produce healthy plants. Herem we describe the presence of endophytic bactéria m micropropagated Yacon. In auxin free media, new roots were induced. Overa 15day period. the average root mduction per expiam was 5.45 to 8.75 under autotrophic and heterotrophic cul-tures, respectively. Root lenglh vaned between 3 and 60mrn. The presence of root hairs and lateral roots was noticed only in auto-trophic condilions. These beneficiai bactéria were identified and chemically ctiaracterized. Acknowledgement: This research work was partially supported by the USDA/ARS Cooperative Research Agreement No. 58-6408-2-009. Referentes; |1) Terada S. et ai. (2006] Yakugaku Zasshi 126(8): 665-669. (2| Valentová K. Ulri-chová j. (2003) Biomedical Papers 147: 119-130. [3| Mogor C. et ai, (2003) Acta Horticulturea 597: 311 -313.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.