943 resultados para Autonomic innervation
Resumo:
Rat airways exposure to Staphylococcal enterotoxin A (SEA) and B (SEB) induces marked neutrophil influx. Since sensory neuropeptides play important roles in cell infiltration, in this study we have investigated its contribution in triggering SEA- and SEB-induced pulmonary neutrophil infiltration. Male Wistar rats were exposed intratracheally with SEA (3 ng/trachea) or SEB (250 ng/trachea). Animals received different in vivo pretreatments, after which the neutrophil counts and levels of substance P and IL-1 in bronchoalveolar lavage fluid were evaluated. Alveolar macrophages and peritoneal mast cells were incubated with SEA and SEB to determine the IL-1 and TNF-alpha levels. Capsaicin pretreatment significantly reduced SEA- and SEB-induced neutrophil influx in bronchoalveolar lavage fluid, but this treatment was more effective to reduce SEA responses. Treatments with SR140333 (tachykinin NK(1) receptor antagonist) and SR48968 (tachykinin NK(2) receptor antagonist) decreased SEA-induced neutrophil influx, whereas SEB-induced responses were inhibited by SR140333 only. Cyproheptadine (histamine/5-hydroxytriptamine receptor antagonist) and MD 7222 (5-HT(3) receptor antagonist) reduced SEA- and SEB-induced neutrophil influx. The substance P and IL-1 levels in bronchoalveolar lavage fluid of SEA-exposed rats were significantly hi.-her than SEB. In addition, SEA (but not SEB) significantly released mast cell TNF-alpha. Increased production of TNF-alpha and IL-1 in alveolar macrophages was observed in response to SEA and SEB. In conclusion, sensory neuropeptides contribute significantly to SEA- and SEB-induced pulmonary neutrophil recruitment, but SEA requires in a higher extent the airways sensory innervation, and participation of mast cells and alveolar macrophage products. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: To investigate the effect of aerobic physical training on cardiovascular autonomic control in ovariectomized rats using different approaches. Design: Female Wistar rats were divided into four groups: sedentary sham rats (group SSR), trained sham rats (group TSR), sedentary ovariectomized rats (group SOR), and trained ovariectomized rats (group TOR). Animals from the trained groups were submitted to a physical training protocol (swimming) for 12 weeks. Results: Pharmacological evaluation showed that animals from group TSR had an increase in their cardiac vagal tonus compared with the animals from groups SSR and SOR. The analysis of heart rate variability (HRV) showed that groups TSR and SOR had fewer low-frequency oscillations (0.20-0.75 Hz) compared with groups SSR and TOR. When groups TSR and SOR were compared, the former was found to have fewer oscillations. With regard to high-frequency oscillations (0.75-2.5 Hz), group SSR had a reduction compared with the other groups, whereas group TSR had the greatest oscillation compared with groups SOR and TOR, with all values expressed in normalized units. Analysis of HRV was performed after pharmacological blockade, and low-frequency oscillations were found to be predominantly sympathetic in sedentary animals, whereas there was no predominance in trained animals. Conclusion: Ovariectomy did not change the tonic autonomic control of the heart and, in addition, reduced the participation of sympathetic component in cardiac modulation. Physical training, on the other hand, increased the participation of parasympathetic modulation on the HRV, including ovariectomized rats.
Resumo:
We have investigated the ovariectomy effects on the cardiovascular autonomic adaptations induced by aerobic physical training and the role played by nitric oxide (NO). Female Wistar rats (n =70) were divided into five groups: Sedentary Sham (SS): Trained Sham (TS); Trained Hypertensive Sham treated with N(C)-nitro-L-arginine methyl ester (L-NAME) (THS): Trained Ovariectomized (TO); and Trained Hypertensive Ovariectomized treated with L-NAME (THO). Trained groups were submitted to a physical training during 10 weeks. The cardiovascular autonomic control was investigated in all groups using different approaches: 1) pharmacological evaluation of autonomic tonus with methylatropine and propranolol; 2) analysis of heart rate (HR) and systolic arterial pressure (AP) variability; 3) spontaneous baroreflex sensitivity (BRS) evaluation. Hypertension was observed in THS and THO groups. Pharmacological analysis showed that TS group had increased predominance of autonomic vagal tonus compared to SS group. HR and intrinsic HR were found to be reduced in all trained animals. TS group, compared to other groups, showed a reduction in LF oscillations (LF=0.2-0.75 Hz) of pulse interval in both absolute and normalized units as well as an increase in HF oscillations (HF=0.75-2.50 Hz) in normalized unit. FIRS analysis showed that alpha-index was different between all groups. TS group presented the greatest value, followed by the TO, SS. THO and THS groups. Ovariectomy has negative effects on cardiac autonomic modulation in trained rats, which is characterized by an increase in the sympathetic autonomic modulation. These negative effects suggest NO deficiency. In contrast, the ovariectomy seems to have no effect on AP variability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose: Hereditary sensory and autonomic neuropathy ( HSAN) type V is a very rare disorder. It is characterized by the absence of thermal and mechanical pain perception caused by decreased number of small diameter neurons in peripheral nerves. Recent genetic studies have pointed out the aetiological role of nerve growth factor beta, which is also involved in the development of the autonomic nervous system and cholinergic pathways in the brain. HSAN type V is usually reported not to cause mental retardation or cognitive decline. However, a structured assessment of the cognitive pro. le of these patients has never been made. Methods and results: We performed a throughout evaluation of four HSAN type V patients and compared their performance with 37 normal individuals. Our patients showed no cognitive deficits, not even mild ones. Discussion and Conclusions: Although newer mutations on this and related disorders are continuously described, their clinical characterization has been restricted to the peripheral aspects of these conditions. A broader characterization of this rare disorder may contribute to better understand the mechanisms of the nociceptive and cognitive aspects of pain.
Resumo:
Objective-To assess viability of innervation in bowel segments appearing macroscopically viable from dogs with intussusception. Animals-7 dogs without gastrointestinal dysfunction that had been euthanized for reasons unrelated to the study (control dogs) and 13 dogs with intussusception that underwent enterectomy and intestinal anastomosis (affected dogs). Procedures-A total of 31 samples of intestinal tissue were obtained from the control dogs; 28 samples were obtained from affected dogs during surgery. Samples were histologically and immunohistochemically prepared and subjectively scored for degree of vacuolization and staining, respectively. Other data collected included mean muscle cell density of circular and longitudinal muscular layers, ratio between areas of muscular layers, mean number of myenteric plexuses, mean ganglion cell density of myenteric plexuses, and degree of degeneration in neuronal plexuses as estimated through synaptophysin and neuron-specific enolase (NSE) immunoreactivity. Results-Mean muscle cell density of longitudinal muscular layers, ratio between areas of muscular layers, and synaptophysin immunoreactivity did not differ significantly between affected and control dogs; values of all other variables did. Correlations were evident between mean ganglion cell density in myenteric plexuses and mean muscle cell density in circular muscular layers, degree of neuronal degeneration in myenteric plexuses and NSE immunoreactivity, and degree of neuronal degeneration in myenteric plexuses and mean ganglion cell density of myenteric plexuses. Conclusions and Clinical Relevance-Innervation may be impaired in bowel segments that appear macroscopically viable. Therefore, careful evaluation of preserved surgical margins during enterectomy and enteroanastomosis and monitoring of digestive function after surgery are important. (Am J Vet Res 2010;71:636-642)
Resumo:
Information processing accounts propose that autonomic orienting reflects the amount of resources allocated to process a stimulus. However, secondary task reaction time (RT), a supposed measure of processing resources, has shown a dissociation from autonomic orienting. The present study tested the hypothesis that secondary task RT reflects a serial processing mechanism. Participants (N = 24) were presented with circle and ellipse shapes and asked to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of a second shape (task-irrelevant). Concurrent with the counting task, participants performed a secondary RT task to an auditory probe presented at either a high or low intensity and at two different probe positions following shape onset (50 and 300 ms). Electrodermal orienting was larger during task-relevant shapes than during task-irrelevant shapes, but secondary task RT to the high-intensity probe was slower during the latter. In addition, an underadditive interaction between probe stimulus intensity and probe position was found in secondary RT. The findings are consistent with a serial processing model of secondary RT and suggest that the notion of processing stages should be incorporated into current information-processing models of autonomic orienting.
Resumo:
1 The effect of chronic morphine treatment (CMT) on sympathetic innervation of the mouse vas deferens and on alpha (2)-adrenoceptor mediated autoinhibition has been examined using intracellular recording of excitatory junction potentials (EJPs) and histochemistry. 2 In chronically saline treated (CST) preparations. morphine (1 muM) and the alpha (2)-adrenoceptor agonist (clonidine, 1 muM) decreased the mean amplitude of EJPs evoked with 0.03 Hz stimulation by 81+/-8% (n=16) and 92+/-6% (n=7) respectively. In CMT preparations, morphine (1 muM) and clonidine (1 muM) decreased mean EJP amplitude by 68+/-8% (n = 7) and 79+/-8% (n = 7) respectively. 3 When stimulating the sympathetic axons at 0.03 Hz. the mean EJP amplitude recorded from smooth muscles acutely withdrawn from CMT was four times greater than for CST smooth muscles (40.7+/-3.8 mV, n = 7 compared with 9.9+/-0.3 mV, n = 7). 4 Part of the increase in mean EJP amplitude following CMT was produced by a 31% increase in the density of sympathetic axons and varicosities innervating the smooth muscle. 5 Results from the present study indicate that the effectiveness of alpha (2)-adrenocrptor mediated autoinhibition is only slightly reduced in CMT preparations. Most of the cross tolerance which develops between morphine, clonidine and alpha (2)-adrenoceptor mediated autoinhibition occurs as a consequence of increased efficacy of neuromuscular transmission which is produced by an increase in the probability of transmitter release and an increase in the density of sympathetic innervation.
Resumo:
Objectives: Advances in surface electromyography (sEMG) techniques provide a clear indication that refinement of electrode location relative to innervation zones (IZ) is required in order to optimise the accuracy, relevance and repeatability of the sEMG signals. The aim of this study was to identify the IZ for the sternocleidomastoid and anterior scalene muscles to provide guidelines for electrode positioning for future clinical and research applications. Methods: Eleven volunteer subjects participated in this study. Myoelectric signals were detected from the sternal and clavicular heads of the stemocleidomastoid and the anterior scalene muscles bilaterally using a linear array of 8 electrodes during isometric cervical flexion contractions. The signals were reviewed and the IZ(s) were identified, marked on the subjects' skin and measurements were obtained relative to selected anatomical landmarks. Results: The position of the IZ lay consistently around the mid-point or in the superior portion of the muscles studied. Conclusions: Results suggest that electrodes should be positioned over the lower portion of the muscle and not the mid-point, which has been commonly used in previous studies. Recommendations for sensor placement on these muscles should assist investigators and clinicians to ensure improved validity in future sEMG applications. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
We investigated the effects of conditional stimulus fear-relevance and of instructed extinction on human Pavlovian conditioning as indexed by electrodermal responses and verbal ratings of conditional stimulus unpleasantness. Half of the participants (n = 64) were trained with pictures of snakes and spiders (fear-relevant) as conditional stimuli, whereas the others were trained with pictures of flowers and mushrooms (fear-irrelevant) in a differential aversive Pavlovian conditioning procedure. Half of the participants in each group were instructed after the completion of acquisition that no more unconditional stimuli were to be presented. Extinction of differential electrodermal responses required more trials after training with fear-relevant pictures. Moreover, there was some evidence that verbal instructions did not affect extinction of second interval electrodermal responses to fear-relevant pictures. However, neither fear-relevance nor instructions affected the changes in rated conditional stimulus pleasantness. This dissociation across measures is interpreted as reflecting renewal of Pavlovian learning.
Resumo:
Latent inhibition (LI) is an important model for understanding cognitive deficits in schizophrenia, Disruption of LI is thought to result from an inability to ignore irrelevant stimuli. The study investigated LI in schizophrenic patients by using Pavlovian conditioning of electrodermal responses in a complete within-subject design. Thirty-two schizophrenic patients, ( 16 acute. unmedicated and 16 medicated patients) and 16 healthy control subjects (matched with respect to age and gender) participated in the study. The experiment consisted of two stages: preexposure and conditioning. During preexposure two visual stimuli were presented, one of which served as the to-be-conditioned stimulus (CSp +) and the other one was the not-to-be-conditioned stimulus (CSp -) during the following conditioning ( = acquisition). During acquisition. two novel visual stimuli (CSn + and CSn -) were introduced. A reaction time task was used as the unconditioned stimulus (US). LI was defined as the difference in response differentiation observed between proexposed and non-preexposed sets of CS + and CS -. During preexposure. the schizophrenic patients did not differ in electrodermal responding from the control subjects, neither concerning the extent of orienting nor the course of habituation. The exposure to novel stimuli at the beginning of the acquisition elicited reduced orienting responses in unmedicated patients compared to medicated patients and control subjects, LI was observed in medicated schizophrenic patients and healthy controls. but not in acute unmedicated patients. Furthermore LI was found to be correlated with the duration of illness: it was attenuated in patients who had suffered their first psychotic episode. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Slowed atrial conduction may contribute to reentry circuits and vulnerability for atrial fibrillation (AF). The autonomic nervous system (ANS) has modulating effects on electrophysiological properties. However, complex interactions of the ANS with the arrhythmogenic substrate make it difficult to understand the mechanisms underlying induction and maintenance of AF. AIM: To determine the effect of acute ANS modulation in atrial activation times in patients (P) with paroxysmal AF (PAF). METHODS AND RESULTS: 16P (9 men; 59±14years) with PAF, who underwent electrophysiological study before AF ablation, and 15P (7 men; 58±11years) with atrioventricular nodal reentry tachycardia, without documentation or induction of AF (control group). Each group included 7P with arterial hypertension but without underlying structural heart disease. The study was performed while off drugs. Multipolar catheters were placed at the high right atrium (HRA), right atrial appendage (RAA), coronary sinus (CS) and His bundle area (His). At baseline and with HRA pacing (600ms, shortest propagated S2) we measured: i) intra-atrial conduction time (IACT, between RAA and atrial deflection in the distal His), ii) inter-atrial conduction time (interACT, between RAA and distal CS), iii) left atrial activation time (LAAT, between atrial deflection in the distal His and distal CS), iv) bipolar electrogram duration at four atrial sites (RAA, His, proximal and distal CS). In the PAF group, measurements were also determined during handgrip and carotid sinus massage (CSM), and after pharmacological blockade of the ANS (ANSB). AF was induced by HRA programmed stimulation in 56% (self-limited - 6; sustained - 3), 68.8% (self-limited - 6; sustained - 5), and 50% (self-limited - 5; sustained - 3) of the P, in basal, during ANS maneuvers, and after ANSB, respectively (p=NS). IACT, interACT and LAAT significantly lengthened during HRA pacing in both groups (600ms, S2). P with PAF have longer IACT (p<0.05), a higher increase in both IACT, interACT (p<0.01) and electrograms duration (p<0.05) with S2, and more fragmented activity, compared with the control group. Atrial conduction times and electrograms duration were not significantly changed during ANS stimulation. Nevertheless, ANS maneuvers increased heterogeneity of the local electrograms duration. Also, P with sustained AF showed longer interACT and LAAT during CSM. CONCLUSION: Atrial conduction times, electrograms duration and fractionated activity are increased in PAF, suggesting a role for conduction delays in the arrhythmogenic substrate. Acute vagal stimulation is associated with prolonged interACT and LAAT in P with inducible sustained AF and ANS modulation may influence the heterogeneity of atrial electrograms duration.