955 resultados para Autonomic Nervous System Diseases
Resumo:
A dictum long-held has stated that the adult mammalian brain and spinal cord are not capable of regeneration after injury. Recent discoveries have, however, challenged this dogma. In particular, a more complete understanding of developmental neurobiology has provided an insight into possible ways in which neuronal regeneration in the central nervous system may be encouraged. Knowledge of the role of neurotrophic factors has provided one set of strategies which may be useful in enhancing CNS regeneration. These factors can now even be delivered to injury sites by transplantation of genetically modified cells. Another strategy showing great promise is the discovery and isolation of neural stem cells from adult CNS tissue. It may become possible to grow such cells in the laboratory and use these to replace injured or dead neurons. The biological and cellular basis of neural injury is of special importance to neurosurgery, particularly as therapeutic options to treat a variety of CNS diseases becomes greater. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
INTRODUCTION: Paracoccidioidomycosis (PCM) is the most important systemic mycosis in South America. Central nervous system involvement is potentially fatal and can occur in 12.5% of cases. This paper aims to contribute to the literature describing eight cases of neuroparacoccidioidomycosis (NPMC) and compare their characteristics with patients without neurological involvement, to identify unique characteristics of NPCM. METHODS: A cohort of 213 PCM cases was evaluated at the Infectious Diseases Clinic of the University Hospital, Federal University of Minas Gerais, Brazil, from October 1976 to August 2008. Epidemiological, clinical, laboratory, therapeutic and follow-up data were registered. RESULTS: Eight patients presented NPCM. The observed NPCM prevalence was 3.8%. One patient presented the subacute form of PCM and the other seven presented the chronic form of the disease. The parenchymatous form of NPCM occurred in all patients. 60% of the patients who proceeded from the north/ northeast region of Minas Gerais State developed NPCM. The neurological involvement of a mother and her son was observed. NPCM patients exhibited demographical and clinical profiles similar to what is described in the literature. When NPCM cases were compared to PCM patients, there were differences in relation to origin and positive PCM family history. CONCLUSIONS: The results corroborate the clinical view that the neurological findings are extremely important in the evaluation of PCM patients. Despite the limitations of this study, the differences in relation to patient's origins and family history point to the need of further studies to determine the susceptibility factors involved in the neurological compromise.
Resumo:
Autophagy is a cellular mechanism for degrading proteins and organelles. It was first described as a physiological process essential for maintaining homeostasis and cell survival, but understanding its role in conditions of stress has been complicated by the recognition of a new type of cell death ("type 2") characterized by deleterious autophagic activity. This paradox is important in the central nervous system where the activation of autophagy seems to be protective in certain neurodegenerative diseases but deleterious in cerebral ischemia. The development of new therapeutic strategies based on the manipulation of autophagy will need to take into account these opposing roles of autophagy.
Resumo:
BACKGROUND The prevalence of and risk factors for central nervous system recurrence in patients with acute promyelocytic leukemia are not well established and remain a controversial matter. DESIGN AND METHODS Between 1996 and 2005, 739 patients with newly diagnosed acute promyelocytic leukemia enrolled in two consecutive trials (PETHEMA LPA96 and LPA99) received induction therapy with all-trans retinoic acid and idarubicin. Consolidation therapy comprised three courses of anthracycline monochemotherapy (LPA96), with all-trans retinoic acid and reinforced doses of idarubicin in patients with an intermediate or high risk of relapse (LPA99). Central nervous system prophylaxis was not given. RESULTS Central nervous system relapse was documented in 11 patients. The 5-year cumulative incidence of central nervous system relapse was 1.7% (LPA96 3.2% and LPA99 1.2%; p=0.09). The cumulative incidence was 0%, 0.8%, and 5.5% in low-, intermediate-, and high-risk patients, respectively. Relapse risk score (p=0.0001) and the occurrence of central nervous system hemorrhage during induction (5-year cumulative incidence 18.7%, p=0.006) were independent risk factors for central nervous system relapse. CONCLUSIONS This study shows a low incidence of central nervous system relapse in patients with acute promyelocytic leukemia following therapy with all-trans retinoic acid and anthracycline without specific central nervous system prophylaxis. Central nervous system relapse was significantly associated with high white blood cell counts and prior central nervous system hemorrhage, which emerged as independent prognostic factors.
Resumo:
A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article.
Resumo:
BACKGROUND: Recent data suggest that varicella zoster virus (VZV)-associated complications of the central nervous system (CNS) are more common and diverse than previously thought. The main purpose of this article is to describe the clinical characteristics and the outcome of patients suffering from meningitis and encephalitis caused by VZV reactivation. METHODS: A retrospective case study of adult patients (≥16 years old) diagnosed with a VZV reactivation in the CNS was performed. The cases were identified by a qualitative PCR DNA assay of the cerebrospinal fluid (CSF) at the Regional Hospital of Lugano between January 1, 2003 and July 31, 2010. RESULTS: Eleven out of 519 CSF samples (2.1%), submitted from patients with a clinical diagnosis of viral meningitis or encephalitis, were positive for VZV. A vesiculo-pustular skin eruption was observed in only five patients (45%). In six cases (55%), a systemic inflammatory syndrome was absent. The clinical outcome was favorable in eight patients (73%). Only one out of 11 patients (9%) died. The four patients with encephalitis had a less favorable prognosis: one patient recovered without residual neurological sequelae; two had a chronic neuropsychological handicap, speech difficulties, facial nerve palsy, and focal seizures; one patient died. We estimated an annual incidence rate of VZV infection of the CNS of 1.02/100 000 inhabitants for southern Switzerland. CONCLUSIONS: Screening of CSF for VZV by PCR is recommended for all patients with encephalitis and for those with viral meningitis of unclear origin in order to better target antiviral treatment.
Resumo:
Here we review the results of our recent studies on neurodegeneration together with data on cerebral calcium precipitation in animal models and humans. A model that integrates the diversity of mechanisms involved in neurodegeneration is presented and discussed based on the functional relevance of calcium precipitation.
Resumo:
The impact of round-the-clock cerebrospinal fluid (CSF) Gram stain on overnight empirical therapy for suspected central nervous system (CNS) infections was investigated. All consecutive overnight CSF Gram stains between 2006 and 2011 were included. The impact of a positive or a negative test on empirical therapy was evaluated and compared to other clinical and biological indications based on institutional guidelines. Bacterial CNS infection was documented in 51/241 suspected cases. Overnight CSF Gram stain was positive in 24/51. Upon validation, there were two false-positive and one false-negative results. The sensitivity and specificity were 41 and 99 %, respectively. All patients but one had other indications for empirical therapy than Gram stain alone. Upon obtaining the Gram result, empirical therapy was modified in 7/24, including the addition of an appropriate agent (1), addition of unnecessary agents (3) and simplification of unnecessary combination therapy (3/11). Among 74 cases with a negative CSF Gram stain and without formal indication for empirical therapy, antibiotics were withheld in only 29. Round-the-clock CSF Gram stain had a low impact on overnight empirical therapy for suspected CNS infections and was associated with several misinterpretation errors. Clinicians showed little confidence in CSF direct examination for simplifying or withholding therapy before definite microbiological results.
Resumo:
Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.
Resumo:
Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.
Resumo:
Bovine meningoencephalitis caused by BHV-5, a double-stranded DNA enveloped virus that belongs to the family Herpesviridae and subfamily Alphaherpesvirinae, is an important differential diagnosis of central nervous diseases. The aim of this study was to describe the histological changes in the central nervous system of calves experimentally infected with BHV-5 and compare these changes with the PCR and IHC results. Formalin-fixed paraffin-embedded central nervous system samples from calves previously inoculated with BHV-5 were microscopically evaluated and tested using IHC and PCR. All the animals presented with nonsuppurative meningoencephalitis. From 18 evaluated areas of each calf, 32.41% and 35.19% were positive by IHC and PCR, respectively. The telencephalon presented more accentuated lesions and positive areas in the PCR than other encephalic areas and was the best sampling area for diagnostic purposes. Positive areas in the IHC and PCR were more injured than IHC and PCR negative areas. The animal with neurological signs showed more PCR- and IHC-positive areas than the other animals.
Resumo:
Alterations in extracellular matrix (ECM) expression in the central nervous system (CNS) usually associated with inflammatory lesions have been described in several pathological situations including neuroblastoma and demyelinating diseases. The participation of fibronectin (FN) and its receptor, the VLA-4 molecule, in the migration of inflammatory cells into the CNS has been proposed. In Trypanosoma cruzi infection encephalitis occurs during the acute phase, whereas in Toxoplasma infection encephalitis is a chronic persisting process. In immunocompromised individuals such as AIDS patients, T. cruzi or T. gondii infection can lead to severe CNS damage. At the moment, there are no data available regarding the molecules involved in the entrance of inflammatory cells into the CNS during parasitic encephalitis. Herein, we characterized the expression of the ECM components FN and laminin (LN) and their receptors in the CNS of T. gondii- and T. cruzi-infected mice. An increased expression of FN and LN was detected in the meninges, leptomeninges, choroid plexus and basal lamina of blood vessels. A fine FN network was observed involving T. gondii-free and T. gondii-containing inflammatory infiltrates. Moreover, perivascular spaces presenting a FN-containing filamentous network filled with a4+ and a5+ cells were observed. Although an increased expression of LN was detected in the basal lamina of blood vessels, the CNS inflammatory cells were a6-negative. Taken together, our results suggest that FN and its receptors VLA-4 and VLA-5 might be involved in the entrance, migration and retention of inflammatory cells into the CNS during parasitic infections.
Resumo:
The spinal muscular atrophies (SMA) or hereditary motor neuronopathies result from the continuous degeneration and death of spinal cord lower motor neurons, leading to progressive muscular weakness and atrophy. We describe a large Brazilian family exhibiting an extremely rare, late-onset, dominant, proximal, and progressive SMA accompanied by very unusual manifestations, such as an abnormal sweating pattern, and gastrointestinal and sexual dysfunctions, suggesting concomitant involvement of the autonomic nervous system. We propose a new disease category for this disorder, `hereditary motor and autonomic neuronopathy', and attribute the term, `survival of motor and autonomic neurons 1' (SMAN1) to the respective locus that was mapped to a 14.5 cM region on chromosome 20q13.2-13.3 by genetic linkage analysis and haplotype studies using microsatellite polymorphic markers. This locus lies between markers D20S120 and D20S173 showing a maximum LOD score of 4.6 at D20S171, defining a region with 33 known genes, including several potential candidates. Identifying the SMAN1 gene should not only improve our understanding of the molecular mechanisms underlying lower motor neuron diseases but also help to clarify the relationship between motor and autonomic neurons.
Resumo:
Introduction: A dysfunctional autonomic nervous system (ANS) has also been recognized as an important mechanism contributing to the poor outcome in CKD patients, with several studies reporting a reduction in heart rate variability (HRV). Objective: Evaluate the sympathovagal balance in patients with chronic kidney disease on conservative treatment. Methods: In a cross-sectional study, patients with CKD stages 3, 4 and 5 not yet on dialysis (CKD group) and age-matched healthy subjects (CON group) underwent continuous heart rate recording during two twenty-minute periods in the supine position (pre-inclined), followed by passive postural inclination at 70° (inclined period). Power spectral analysis of the heart rate variability was used to assess the normalized low frequency (LFnu), indicative of sympathetic activity, and the normalized high frequency (HFnu), indicative of parasympathetic activity. The LFnu/HFnu ratio represented sympathovagal balance. Results: After tilting, CKD patients had lower sympathetic activity, higher parasympathetic activity, and lower sympathovagal balance than patients in the CON group. Compared to patients in stage 3, patients in stage 5 had a lower LFnu/HFnu ratio, suggesting a more pronounced impairment of sympathovagal balance as the disease progresses. Conclusion: CKD patients not yet on dialysis have reduced HRV, indicating cardiac autonomic dysfunction early in the course of CKD.
Resumo:
G protein-coupled receptors (GPCRs) are expressed throughout the nervous system where they regulate multiple physiological processes, participate in neurological diseases, and are major targets for therapy. Given that many GPCRs respond to neurotransmitters and hormones that are present in the extracellular fluid and which do not readily cross the plasma membrane, receptor trafficking to and from the plasma membrane is a critically important determinant of cellular responsiveness. Moreover, trafficking of GPCRs throughout the endosomal system can initiate signaling events that are mechanistically and functionally distinct from those operating at the plasma membrane. This review discusses recent advances in the relationship between signaling and trafficking of GPCRs in the nervous system. It summarizes how receptor modifications influence trafficking, discusses mechanisms that regulate GPCR trafficking to and from the plasma membrane, reviews the relationship between trafficking and signaling, and considers the implications of GPCR trafficking to drug development.