908 resultados para Automatic speech recognition (ASR)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boltzmann machines offer a new and exciting approach to automatic speech recognition, and provide a rigorous mathematical formalism for parallel computing arrays. In this paper we briefly summarize Boltzmann machine theory, and present results showing their ability to recognize both static and time-varying speech patterns. A machine with 2000 units was able to distinguish between the 11 steady-state vowels in English with an accuracy of 85%. The stability of the learning algorithm and methods of preprocessing and coding speech data before feeding it to the machine are also discussed. A new type of unit called a carry input unit, which involves a type of state-feedback, was developed for the processing of time-varying patterns and this was tested on a few short sentences. Use is made of the implications of recent work into associative memory, and the modelling of neural arrays to suggest a good configuration of Boltzmann machines for this sort of pattern recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hidden Markov model (HMM)-based speech synthesis systems possess several advantages over concatenative synthesis systems. One such advantage is the relative ease with which HMM-based systems are adapted to speakers not present in the training dataset. Speaker adaptation methods used in the field of HMM-based automatic speech recognition (ASR) are adopted for this task. In the case of unsupervised speaker adaptation, previous work has used a supplementary set of acoustic models to estimate the transcription of the adaptation data. This paper first presents an approach to the unsupervised speaker adaptation task for HMM-based speech synthesis models which avoids the need for such supplementary acoustic models. This is achieved by defining a mapping between HMM-based synthesis models and ASR-style models, via a two-pass decision tree construction process. Second, it is shown that this mapping also enables unsupervised adaptation of HMM-based speech synthesis models without the need to perform linguistic analysis of the estimated transcription of the adaptation data. Third, this paper demonstrates how this technique lends itself to the task of unsupervised cross-lingual adaptation of HMM-based speech synthesis models, and explains the advantages of such an approach. Finally, listener evaluations reveal that the proposed unsupervised adaptation methods deliver performance approaching that of supervised adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model compensation methods for noise-robust speech recognition have shown good performance. Predictive linear transformations can approximate these methods to balance computational complexity and compensation accuracy. This paper examines both of these approaches from a variational perspective. Using a matched-pair approximation at the component level yields a number of standard forms of model compensation and predictive linear transformations. However, a tighter bound can be obtained by using variational approximations at the state level. Both model-based and predictive linear transform schemes can be implemented in this framework. Preliminary results show that the tighter bound obtained from the state-level variational approach can yield improved performance over standard schemes. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model-based approaches to handling additive background noise and channel distortion, such as Vector Taylor Series (VTS), have been intensively studied and extended in a number of ways. In previous work, VTS has been extended to handle both reverberant and background noise, yielding the Reverberant VTS (RVTS) scheme. In this work, rather than assuming the observation vector is generated by the reverberation of a sequence of background noise corrupted speech vectors, as in RVTS, the observation vector is modelled as a superposition of the background noise and the reverberation of clean speech. This yields a new compensation scheme RVTS Joint (RVTSJ), which allows an easy formulation for joint estimation of both additive and reverberation noise parameters. These two compensation schemes were evaluated and compared on a simulated reverberant noise corrupted AURORA4 task. Both yielded large gains over VTS baseline system, with RVTSJ outperforming the previous RVTS scheme. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, the use of morphological decomposition strategies for Arabic Automatic Speech Recognition (ASR) has become increasingly popular. Systems trained on morphologically decomposed data are often used in combination with standard word-based approaches, and they have been found to yield consistent performance improvements. The present article contributes to this ongoing research endeavour by exploring the use of the 'Morphological Analysis and Disambiguation for Arabic' (MADA) tools for this purpose. System integration issues concerning language modelling and dictionary construction, as well as the estimation of pronunciation probabilities, are discussed. In particular, a novel solution for morpheme-to-word conversion is presented which makes use of an N-gram Statistical Machine Translation (SMT) approach. System performance is investigated within a multi-pass adaptation/combination framework. All the systems described in this paper are evaluated on an Arabic large vocabulary speech recognition task which includes both Broadcast News and Broadcast Conversation test data. It is shown that the use of MADA-based systems, in combination with word-based systems, can reduce the Word Error Rates by up to 8.1 relative. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech is the primary, most prominent and convenient means of communication in audible language. Through speech, people can express their thoughts, feelings or perceptions by the articulation of words. Human speech is a complex signal which is non stationary in nature. It consists of immensely rich information about the words spoken, accent, attitude of the speaker, expression, intention, sex, emotion as well as style. The main objective of Automatic Speech Recognition (ASR) is to identify whatever people speak by means of computer algorithms. This enables people to communicate with a computer in a natural spoken language. Automatic recognition of speech by machines has been one of the most exciting, significant and challenging areas of research in the field of signal processing over the past five to six decades. Despite the developments and intensive research done in this area, the performance of ASR is still lower than that of speech recognition by humans and is yet to achieve a completely reliable performance level. The main objective of this thesis is to develop an efficient speech recognition system for recognising speaker independent isolated words in Malayalam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. â La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. â Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. â Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. â Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. â Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en â˜dos etapasâ. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Todayâs commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. â Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. â One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. â We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. â We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. â Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in â˜a two stagesâ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past decade, tremendous advances in the state of the art of automatic speech recognition by machine have taken place. A reduction in the word error rate by more than a factor of 5 and an increase in recognition speeds by several orders of magnitude (brought about by a combination of faster recognition search algorithms and more powerful computers), have combined to make high-accuracy, speaker-independent, continuous speech recognition for large vocabularies possible in real time, on off-the-shelf workstations, without the aid of special hardware. These advances promise to make speech recognition technology readily available to the general public. This paper focuses on the speech recognition advances made through better speech modeling techniques, chiefly through more accurate mathematical modeling of speech sounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comunicação verbal humana é realizada em dois sentidos, existindo uma compreensão de ambas as partes que resulta em determinadas considerações. Este tipo de comunicação, também chamada de diálogo, para além de agentes humanos pode ser constituído por agentes humanos e máquinas. A interação entre o Homem e máquinas, através de linguagem natural, desempenha um papel importante na melhoria da comunicação entre ambos. Com o objetivo de perceber melhor a comunicação entre Homem e máquina este documento apresenta vários conhecimentos sobre sistemas de conversação Homemmáquina, entre os quais, os seus módulos e funcionamento, estratégias de diálogo e desafios a ter em conta na sua implementação. Para além disso, são ainda apresentados vários sistemas de Speech Recognition, Speech Synthesis e sistemas que usam conversação Homem-máquina. Por último são feitos testes de performance sobre alguns sistemas de Speech Recognition e de forma a colocar em prática alguns conceitos apresentados neste trabalho, é apresentado a implementação de um sistema de conversação Homem-máquina. Sobre este trabalho várias ilações foram obtidas, entre as quais, a alta complexidade dos sistemas de conversação Homem-máquina, a baixa performance no reconhecimento de voz em ambientes com ruído e as barreiras que se podem encontrar na implementação destes sistemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speaker diarization is the process of annotating an input audio with information that attributes temporal regions of the audio signal to their respective sources, which may include both speech and non-speech events. For speech regions, the diarization system also specifies the locations of speaker boundaries and assign relative speaker labels to each homogeneous segment of speech. In short, speaker diarization systems effectively answer the question of â˜who spoke whenâ. There are several important applications for speaker diarization technology, such as facilitating speaker indexing systems to allow users to directly access the relevant segments of interest within a given audio, and assisting with other downstream processes such as summarizing and parsing. When combined with automatic speech recognition (ASR) systems, the metadata extracted from a speaker diarization system can provide complementary information for ASR transcripts including the location of speaker turns and relative speaker segment labels, making the transcripts more readable. Speaker diarization output can also be used to localize the instances of specific speakers to pool data for model adaptation, which in turn boosts transcription accuracies. Speaker diarization therefore plays an important role as a preliminary step in automatic transcription of audio data. The aim of this work is to improve the usefulness and practicality of speaker diarization technology, through the reduction of diarization error rates. In particular, this research is focused on the segmentation and clustering stages within a diarization system. Although particular emphasis is placed on the broadcast news audio domain and systems developed throughout this work are also trained and tested on broadcast news data, the techniques proposed in this dissertation are also applicable to other domains including telephone conversations and meetings audio. Three main research themes were pursued: heuristic rules for speaker segmentation, modelling uncertainty in speaker model estimates, and modelling uncertainty in eigenvoice speaker modelling. The use of heuristic approaches for the speaker segmentation task was first investigated, with emphasis placed on minimizing missed boundary detections. A set of heuristic rules was proposed, to govern the detection and heuristic selection of candidate speaker segment boundaries. A second pass, using the same heuristic algorithm with a smaller window, was also proposed with the aim of improving detection of boundaries around short speaker segments. Compared to single threshold based methods, the proposed heuristic approach was shown to provide improved segmentation performance, leading to a reduction in the overall diarization error rate. Methods to model the uncertainty in speaker model estimates were developed, to address the difficulties associated with making segmentation and clustering decisions with limited data in the speaker segments. The Bayes factor, derived specifically for multivariate Gaussian speaker modelling, was introduced to account for the uncertainty of the speaker model estimates. The use of the Bayes factor also enabled the incorporation of prior information regarding the audio to aid segmentation and clustering decisions. The idea of modelling uncertainty in speaker model estimates was also extended to the eigenvoice speaker modelling framework for the speaker clustering task. Building on the application of Bayesian approaches to the speaker diarization problem, the proposed approach takes into account the uncertainty associated with the explicit estimation of the speaker factors. The proposed decision criteria, based on Bayesian theory, was shown to generally outperform their non- Bayesian counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Query-by-Example Spoken Term Detection (QbE STD) aims at retrieving data from a speech data repository given an acoustic query containing the term of interest as input. Nowadays, it has been receiving much interest due to the high volume of information stored in audio or audiovisual format. QbE STD differs from automatic speech recognition (ASR) and keyword spotting (KWS)/spoken term detection (STD) since ASR is interested in all the terms/words that appear in the speech signal and KWS/STD relies on a textual transcription of the search term to retrieve the speech data. This paper presents the systems submitted to the ALBAYZIN 2012 QbE STD evaluation held as a part of ALBAYZIN 2012 evaluation campaign within the context of the IberSPEECH 2012 Conference(a). The evaluation consists of retrieving the speech files that contain the input queries, indicating their start and end timestamps within the appropriate speech file. Evaluation is conducted on a Spanish spontaneous speech database containing a set of talks from MAVIR workshops(b), which amount at about 7 h of speech in total. We present the database metric systems submitted along with all results and some discussion. Four different research groups took part in the evaluation. Evaluation results show the difficulty of this task and the limited performance indicates there is still a lot of room for improvement. The best result is achieved by a dynamic time warping-based search over Gaussian posteriorgrams/posterior phoneme probabilities. This paper also compares the systems aiming at establishing the best technique dealing with that difficult task and looking for defining promising directions for this relatively novel task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obtaining accurate confidence measures for automatic speech recognition (ASR) transcriptions is an important task which stands to benefit from the use of multiple information sources. This paper investigates the application of conditional random field (CRF) models as a principled technique for combining multiple features from such sources. A novel method for combining suitably defined features is presented, allowing for confidence annotation using lattice-based features of hypotheses other than the lattice 1-best. The resulting framework is applied to different stages of a state-of-the-art large vocabulary speech recognition pipeline, and consistent improvements are shown over a sophisticated baseline system. Copyright © 2011 ISCA.