919 resultados para Australian marine sponge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten strains identified as marine actinomycetes related to the 'Salinospora ' group previously reported only from marine sediments were isolated from the Great Barrier Reef marine sponge Pseudoceratina clavata. The relationship of the isolates to 'Salinospora' was confirmed by phylogenetic analysis of 16S rRNA gene sequences. Colony morphology and pigmentation, occurrence and position of spores, and salinity requirements for growth were all consistent with this relationship. Genes homologous to beta-ketosynthase, an enzyme forming part of a polyketide synthesis complex, were retrieved from these isolates; these genes shared homology with other Type I ketosynthase genes, and phylogenetic comparison with amino acid sequences derived from database beta-ketosynthase genes was consistent with the close relationship of these isolates to the actinomycetes. Primers based on 16S rRNA gene sequences and designed for targeting amplification of members of the 'Salinospora' group via polymerase chain reaction have been used to demonstrate occurrence of these actinomycetes within the sponge tissue. In vitro bioassays of extracts from the isolates for antibiotic activity demonstrated that these actinomycetes have the potential to inhibit other sponge symbionts in vivo, including both Gram-negative and Gram-positive bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many attempts have been made by ichnologists to match bioerosion traces to their respective tracemakers. This task has been considered difficult, especially for fossil samples. The present study demonstrates that the Australian bioeroding sponge Aka paratypica can generate a cavity similar to the ichnospecies Entobia devonica. The modern sponge and its cavity are redescribed and compared to the fossil boring. A. paratypica has white fistules and soft, mucoid endosomal tissue. Spicules are stout oxeas with often telescoped or mucronate tips. Observed borings of A. paratypica are rounded and cavernous, with canals and apertures radiating from the chambers in all directions. It was noted that the internal openings of such canals are covered with porous nodules, which may act as sieves against larger particles or intruding endofauna. No obvious microsculpturing was observed in the erosion scars. A. paratypica borings are analogous to ancient E. devonica borings, which to date were only known from the fossil record.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives Based on previous screening results, the cytotoxic effect of the hexane (JDH) and ethyl acetate extracts (JDE) of the marine sponge Jaspis diastra were evaluated on HeLa cells and the present study aimed at determining their possible mechanism of cell death. Methods Nuclear staining, membrane potential change, flow cytometry analysis of cell cycle distribution and annexin V staining were undertaken to investigate the effects of JDE and JDH. Electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance were used to characterize an isolated bioactive molecule. Key findings JDE displayed an IC50 25 times more significant than the JDH. Flow cytometry analysis revealed JDE induced apoptosis in HeLa cells accompanied by the collapse of mitochondrial membrane potential. Fractionation of JDE resulted in the isolation of the known cytotoxic cyclodepsipeptide, Jaspamide. Conclusions Taking our results together suggest that JDE can be valuable for the development of anticancer drugs, especially for cervical cancer. Further investigations are currently in progress with the aim to determine and isolate other bioactive compounds from this extract.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Marine sponges (phylum Porifera) are the oldest extant metazoan animals on earth and host large populations of symbiotic microbes: Bacteria, Archaea and unicellular Eukaryota. Those microbes play ecological functions which are essential to the health of the host including carbon, nitrogen and sulfur cycling as well as host defence through the production of bioactive secondary metabolites which protect against infection and predation. The diversity of sponge-associated microbes is remarkable with thousands of OTUs reported from individual sponge species. Amongst those populations are sponge-specific microbes which may be specific to sponges or specific to sponge species. While marine natural product discovery concerns many animal phyla, Porifera account for the largest proportion of novel compounds. Evidence suggests that many of these compounds are the products of symbiotic microbes. Descriptions of sponge-associated microbial community structures have been advanced by the development of next-generation sequencing technologies while the discovery and exploitation of sponge derived bioactive compounds has increased due to developments in sequence-based and function-based metagenomics. Here, we use pyrosequencing to describe the bacterial communities associated with two shallow, temperate water sponges (Raspailia ramosa and Stelligera stuposa) from Irish coastal waters and to describe the bacterial and archaeal communities of a single sponge species (Inflatella pellicula) from two different depths in deep waters in the Atlantic Ocean, including at a depth of 2900m, a depth far greater than that of any previous sequence-based sponge-microbe investigation. We identified diverse microbial communities in all sponges and the presence of sponge-specific taxa recruiting to previously described and novel spongespecific clusters. We also identified archaeal communities which dominated sponge-microbe communities. We demonstrate that sponge-associated microbial communities differ from seawater communities indicating host selection processes. We used sequence-based metagenomic techniques to identify genes of potential industrial and pharmacological interest in the metagenomes of various sponge species and functionbased metagenomic screening in an attempt to identify lipolytic and antibacterial activities from metagenomic clones from the metagenome of the marine sponge Stelletta normani. In addition we have cultured diverse bacterial species from sponge tissues, many of which display antimicrobial activities against clinically relevant bacterial and yeast test strains. Other isolates represent novel species in the genus Maribacter and require emendments to the description of that genus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The production of complex inorganic forms, based on naturally occurring scaffolds offers an exciting avenue for the construction of a new generation of ceramic-based bone substitute scaffolds. The following study reports an investigation into the architecture (porosity, pore size distribution, pore interconnectivity and permeability), mechanical properties and cytotoxic response of hydroxyapatite bone substitutes produced using synthetic polymer foam and natural marine sponge performs. Infiltration of polyurethane foam (60 pores/in2) using a high solid content (80wt %), low viscosity (0.126Pas) hydroxyapatite slurry yielded 84-91% porous replica scaffolds with pore sizes ranging from 50µm - 1000µm (average pore size 577µm), 99.99% pore interconnectivity and a permeability value of 46.4 x10-10m2. Infiltration of the natural marine sponge, Spongia agaricina, yielded scaffolds with 56- 61% porosity, with 40% of pores between 0-50µm, 60% of pores between 50-500µm (average pore size 349 µm), 99.9% pore interconnectivity and a permeability value of 16.8 x10-10m2. The average compressive strengths and compressive moduli of the natural polymer foam and marine sponge replicas were 2.46±1.43MPa/0.099±0.014GPa and 8.4±0.83MPa /0.16±0.016GPa respectively. Cytotoxic response proved encouraging for the HA Spongia agaricina scaffolds; after 7 days in culture medium the scaffolds exhibited endothelial cells (HUVEC and HDMEC) and osteoblast (MG63) attachment, proliferation on the scaffold surface and penetration into the pores. It is proposed that the use of Spongia agaricina as a precursor material allows for the reliable and repeatable production of ceramic-based 3-D tissue engineered scaffolds exhibiting the desired architectural and mechanical characteristics for use as a bone 3 scaffold material. Moreover, the Spongia agaricina scaffolds produced exhibit no adverse cytotoxic response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm3 were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1x105 cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91% porosity and 99.99% pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61% porosity and 99.9% pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS) showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemical investigation of the crude extract of a marine sponge Dysidea robusta led to the isolation of an inseparable mixture of saturated ceramides. These were identified from spectroscopic data as well as by hydrolysis followed by LC-MS analysis of the sphingosine moieties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biosynthetic origins of the isocyanide and isothiocyanate functional groups in the marine sponge metabolites diisocyanoadociane (1), 9-isocyanopupukeanane (10) and 9- isothiocyanatopupukeanane (11) are probed by the use of [C-14]-labelled precursor experiments. Incubation of the sponge Amphimedon terpenensis with [C-14]-labelled thiocyanate resulted in radioactive diisocyanoadociane ( 1) in which the radiolabel is specifically associated with the isocyanide carbons. As expected, cyanide and thiocyanate were confirmed as precursors to the pupukeananes 10 and 11 in the sponge Axinyssa n. sp.; additionally these precursors labelled 2-thiocyanatoneopupukeanane ( 12) in this sponge. To probe whether isocyanide-isothiocyanate interconversions take place at the secondary metabolite level, the advanced precursor bisisothiocyanate 17 was supplied to A. terpenensis, but did not result in significant labelling in the natural product isocyanide 1. In contrast, in the sponge Axinyssa n. sp., feeding of [C-14]-9-isocyanopupukeanane (10) resulted in isolation of radiolabelled 9- isothiocyanatopupukeanane 11, while the feeding of [C-14]-11 resulted in labelled isocyanide 10. These results show conclusively that isocyanides and isothiocyanates are interconverted in the sponge Axinyssa n. sp., and confirm the central role that thiocyanate occupies in the terpene metabolism of this sponge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The diversity of the culturable microbial communities was examined in two sponge species-Pseudoceratina clavata and Rhabdastrella globostellata. Isolates were characterized by 16S rRNA gene sequencing and phylogenetic analysis. The bacterial community structures represented in both sponges were found to be similar at the phylum level by the same four phyla in this study and also at a finer scale at the species level in both Firmicutes and Alphaproteobacteria. The majority of the Alphaproteobacteria isolates were most closely related to isolates from other sponge species including alpha proteobacterium NW001 sp. and alpha proteobacterium MBIC3368. Members of the low %G + C gram-positive (phylum Firmicutes), high %G + C gram-positive (phylum Actinobacteria), and Cytophaga-Flavobacterium-Bacteroides (phylum Bacteroidetes) phyla of domain Bacteria were also represented in both sponges. In terms of culturable organisms, taxonomic diversity of the microbial community in the two sponge species displays similar structure at phylum level. Within phyla, isolates often belonged to the same genus-level monophyletic group. Community structure and taxonomic composition in the two sponge species P. clavata and Rha. globostellata share significant features with those of other sponge species including those from widely separated geographical and climatic regions of the sea.