1000 resultados para Atomic spectra


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional calculations, using B3LPY/6-31G(d) methods, have been used to investigate the conformations and vibrational (Raman) spectra of a series of long-chain, saturated fatty acid methyl esters (FAMEs) with the formula CH2nO2 (n = 5-21) and two series of unsaturated FAMEs. The calculations showed that the lowest energy conformer within the saturated FAMEs is the simple (all-trans) structure and, in general, it was possible to reproduce experimental data using calculations on only the all-trans conformer. The only exception was C6H12O2, where a second low-lying conformer had to be included in order to correctly simulate the experimental Raman spectrum. The objective of the work was to provide theoretical justification for the methods that are commonly used to determine the properties of the fats and oils, such as chain length and degree of unsaturation, from experimental Raman data. Here it is shown that the calculations reproduce the trends and calibration curves that are found experimentally and also allow the reasons for the failure of what would appear to be rational measurements to be understood. This work shows that although the assumption that each FAME can simply be treated as a collection of functional groups can be justified in some cases, many of the vibrational modes are complex motions of large sections of the molecules and thus would not be expected to show simple linear trends with changes in structure, such as increasing chain length and/or unsaturation. Simple linear trends obtained from experimental data may thus arise from cancellation of opposing effects, rather than reflecting an underlying simplicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of a parallel-projection inversion technique to z-scan spectra of multiply charged xenon and krypton ions, obtained by non-resonant field ionization of neutral targets, has for the first time permitted the direct observation of intensity-dependent ionization probabilities. These ionization efficiency curves have highlighted the presence of structure in the tunnelling regime, previously unobserved under full-volume techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proton energy spectrum from photodissociation of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schrödinger equation is discretized and integrated. For few-cycle pulses one can resolve vibrational structure, arising from the experimental preparation of the molecular ion. We calculate the corresponding energy spectrum and analyse the dependence on the pulse time delay, pulse length and intensity of the laser for ? ~ 790 nm. We conclude that the proton spectrum is a sensitive probe of both the vibrational populations and phases, and allows us to distinguish between adiabatic and nonadiabatic dissociation. Furthermore, the sensitivity of the proton spectrum from H2+ is a practical means of calibrating the pulse. Our results are compared with recent measurements of the proton spectrum for 65 fs pulses using a Ti:Sapphire laser (? ~ 790 nm) including molecular orientation and focal-volume averaging. Integrating over the laser focal volume, for the intensity I ~ 3 × 1015 W cm-2, we find our results are in excellent agreement with these experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 angstrom wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the 3s(2)3p(5) P-2(3/2)-3s(2)3p(4)(S-1)3d D-2(3/2) transition at 195.32 angstrom is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density (N-e) diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between N-e = 10(8) and 10(11) cm(-3), and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine N-e, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 angstrom line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74. Electron densities deduced from 175.27/174.53 and 175.27/177.24 for the stars Procyon and alpha Cen, using observations from the Extreme-Ultraviolet Explorer (EUVE) satellite, are found to be consistent and in agreement with the values of N-e determined from other diagnostic ratios in the EUVE spectra. A comparison of several theoretical extreme-ultraviolet Fe X line ratios with experimental values for a theta-pinch, for which the plasma parameters have been independently determined, reveals reasonable agreement between theory and observation, providing some independent support for the accuracy of the adopted atomic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exact and general approach to study molecular vibrations is provided by the Watson Hamiltonian. Within this framework, it is customary to omit the contribution of the terms with the vibrational angular momentum and the Watson term, especially for the study of large systems. We discover that this omission leads to results which depend on the choice of the reference structure. The self-consistent solution proposed here yields a geometry that coincides with the quantum averaged geometry of the Watson Hamiltonian and appears to be a promising way for the computation of the vibrational spectra of strongly anharmonic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T-e) and density (N-e) emission line ratios involving both the nebular (5517.7, 5537.9 Angstrom) and auroral (8433.9, 8480.9, 8500.0 Angstrom) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R-1 = /(5518 Angstrom)/I(5538 Angstrom) intensity ratio provides estimates of N-e in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R-1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl III] 8433.9 Angstrom line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl III] intensity may be reliably measured, it provides accurate determinations of T-e when ratioed against the sum of the 5518 and 5538 Angstrom line fluxes. Similarly, the 8500.0 Angstrom line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [CI III] transition at 8480.9 Angstrom is found to be blended with the He I 8480.7 Angstrom line, except in planetary nebulae that show a relatively weak He I spectrum, where it also provides reliable estimates of T-e when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl III] lines at 3344 and 3354 Angstrom is briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates in Ar IV are used to calculate the emission-line ratio: ratio diagrams (R1, R2), (R1, R3), and (R1, R4), where K1 = I(4711 Å)/I(4740 Å), R2 = I(7238 Å)/I(4711 + 4740 Å), R3 = I(7263 Å)/I(4711 + 4740 Å), and R4 = I(7171 Å)/I(4711 + 4740 Å), for a range of electron temperatures (Te = 5000-20,000 K) and electron densities (Ne = 10-106 cm-3) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of Te and Ne from measurements of the [Ar IV] lines in a spectrum. Plasma parameters deduced for a sample of planetary nebulae from (R1, R3) and (R1, R4), using observational date obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope at the Lick Observatory, are found to show excellent internal consistency and to be in generally good agreement with the values of Te and Ne estimated from other line ratios in the echelle spectra. These results provide observational support for the accuracy of the theoretical ratios and, hence, the atomic data adopted in their derivation. In addition, they imply that the 7171 Å line is not as seriously affected by telluric absorption as previously thought. However, the observed values of R2 are mostly larger than the theoretical high-temperature and density limit, which is due to blending of the Ar IV 7237.54 Å line with the strong C II transition at 7236 Å. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gamma-ray positron annihilation spectra of the noble gases are simulated using computational chemistry tools for the bound electron wavefunctions and plane-wave approximation for the low-energy positron. The present annihilation line shapes, i.e. the full width at half maximum, Delta epsilon, of the gamma-ray annihilation spectra for He and Ar (valence) agree well with available independent atomic calculations using a different algorithm. For other noble gases they achieve moderate agreement with the experimental measurements. It is found that the contributions of various atomic electron shells to the spectra depend significantly on their principal quantum number n and orbital angular momentum quantum number l. The present study further reveals that the outermost ns electrons of the noble gases exhibit spectral line shapes in close agreement with those measured, indicating (as expected) that the measurements are not due to a simple sum over the momentum densities for all atomic electrons. The robust nature of the present approach makes it possible for us to proceed to more complex molecular systems using the tools of modern computational chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A many-body theory approach to the calculation of gamma spectra of positron annihilation on many-electron atoms is developed. We evaluate the first-order correlation correction to the annihilation vertex and perform numerical calculations for the noble gas atoms. Extrapolation with respect to the maximal orbital momentum of the intermediate electron and positron states is used to achieve convergence. The inclusion of correlation corrections improves agreement with experimental gamma spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the influence of the autoionizing 3s3p6nl resonances on the fifth harmonic generated by 200–240 nm laser fields interacting with Ar. To determine the influence of a multielectron response we develop the capability within time-dependent R-matrix theory to determine the harmonic spectra generated. The fifth harmonic is affected by interference between the response of a 3s electron and the response of a 3p electron, as demonstrated by the asymmetric profiles in the harmonic yields as functions of wavelength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-resonant multiphoton ionization combined with quadrupole and time-of-flight analysis has been used to study sputtering by both atomic and molecular ion beams. The mass spectra and energy distributions of both sputtered atoms and secondary ions produced by 3.6 keV Ar+, N+, N-2(+), CF2+ and CF3+ ion bombardment at 45 degrees to a polycrystalline copper target have been measured. The energy distributions of the copper ions and atoms are found to be different and quite complex. The ion distributions can generally be described by a linear collision cascade model, with possible evidence for a knock-on contribution. The sputtered atom distributions are partially described by a combination of linear collision cascade and dense cascade (thermal spike) models. This is interpreted as support for a time-evolving sputtering mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma produced during laser ablation deposition of thin film YBCO has been studied by optical emission spectroscopy. There is evidence of increased YO band emission in the range 590-625 nm as the ambient oxygen gas pressure confining the plume is increased in the range 30-200 m Torr. Temporal profiles show that close to the target the plume is insensitive to ambient oxygen pressure. It is deduced that the optical emission here is excited by electron impact excitation. Further away from the target there is evidence that two distinct processes are at work. One is again electron excitation; the emission from this process decreases with distance because the expanding plume cools and collisions become less frequent in the expanding gas. The second is driven by oxidation of atomic species expelled at high speeds from the target. The main region of this activity is in the plume sheath where a shock front ensures heating of ambient O2 and reaction of monatomic plasma species to form oxide in an exothermic reaction. Spatial mapping of the emission demonstrates clearly how increasing oxygen gas pressure confines the plasma and enhances the emission intensity from the molecular YO species ejected from the target in a smaller region close to the target. Ba+ is observed as a dominant species only very close to (within 1 mm of) the target. Absorption spectra have been taken in an attempt to examine ground state and cool species in the plume. They reveal the quite surprising result that YO persists in the chamber for periods up to 1 msec. This suggests an explanation for the recent report of off-axis laser deposition in terms of simple condensation. Previously, quasi-ballistic transfer of material from target to substrate has been considered the only significant process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calculations of ?-spectra for positron annihilation on a selection of molecules, including methane and its fluoro-substitutes, ethane, propane, butane and benzene are presented. The annihilation ?-spectra characterise the momentum distribution of the electron-positron pair at the instant of annihilation. The contribution to the ?-spectra from individual molecular orbitals is obtained from electron momentum densities calculated using modern computational quantum chemistry density functional theory tools. The calculation, in its simplest form, effectively treats the low-energy (thermalised, room-temperature) positron as a plane wave and gives annihilation ?-spectra that are about 40% broader than experiment, although the main chemical trends are reproduced. We show that this effective 'narrowing' of the experimental spectra is due to the action of the molecular potential on the positron, chiefly, due to the positron repulsion from the nuclei. It leads to a suppression of the contribution of small positron-nuclear separations where the electron momentum is large. To investigate the effect of the nuclear repulsion, as well as that of short-range electron-positron and positron-molecule correlations, a linear combination of atomic orbital description of the molecular orbitals is employed. It facilitates the incorporation of correction factors which can be calculated from atomic many-body theory and account for the repulsion and correlations. Their inclusion in the calculation gives -spectrum linewidths that are in much better agreement with experiment. Furthermore, it is shown that the effective distortion of the electron momentum density, when it is observed through positron annihilation -spectra, can be approximated by a relatively simple scaling factor. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectra of ?-ray Doppler shifts for positron annihilation in benzene and its fluoro-derivatives are simulated using low energy plane wave positron (LEPWP) approximation. The results are compared with available measurements. It is found that the Doppler shifts in these larger aromatic compounds are dominated by the contributions of the valence electrons and that the LEPWP model overestimates the measurements by approximately 30%, in agreement with previous findings in noble gases and small molecules. It is further revealed that the halogen atoms not only switch the sign of the charges on carbon atoms that they bond to, but that they also polarize other C-H bonds in the molecule leading to a redistribution of the molecular electrostatic potentials. As a result, it is likely that the halogen atoms contribute more significantly to the annihilation process. The present study also suggests that, while the Doppler shifts are sensitive to the number of valence electrons in the molecules, they are less sensitive to the chemical structures of isomers that have the same numbers and type of atoms and, hence, the same numbers of electrons. Further investigation of this effect is warranted. © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012.