986 resultados para Atomic scattering length


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within the framework of scattering integral equations in momentum space, we present numerical results of scattering of three identical bosons at low energies in two dimensions for short-range separable potentials. An analysis of the present numerical results reveals the three-particle scattering observables to be independent of potential shape provided the low-energy two-particle binding energy and scattering length are held fixed throughout the investigation. We think that the present conclusion of model independence will be valid for any potential, local or nonlocal, whose range is much smaller than the size of the two-particle bound state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chaotic oscillation in an attractive Bose-Einstein condensate (BEC) under an impulsive force was discussed using mean-field Gross-Pitaevskii (GP) equation. It was found that sustained chaotic oscillation resulted in a BEC under the action of an impulsive force generated by suddenly changing the interatomic scattering length or the harmonic oscillator trapping potential. The analysis suggested that the final state interatomic attraction played an important role in the generation of the chaotic dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical simulations based on the time-dependent mean-field Gross-Pitaevskii equation was performed to explain the dynamics of collapsing and exploding Bose-Einstein condensates (BEC) of 85Rb atoms. The atomic interaction was manipulated by an external magnetic field via a Feshbach resonance. On changing the scattering length of atomic interaction from a positive to a large negative value, the condensate collapsed and ejected atoms via explosion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We perform a systematic numerical study, based on the time-dependent Gross-Pitaevskii equation, of jet formation in collapsing and exploding Bose-Einstein condensates as in the experiment by Donley et al (2001 Nature 412 295). In the actual experiment, via a Feshbach resonance, the scattering length of atomic interaction was suddenly changed from positive to negative on a pre-formed condensate. Consequently, the condensate collapsed and ejected atoms via explosion. On disruption of the collapse by suddenly changing the scattering length to zero, a radial jet of atoms was formed in the experiment. We present a satisfactory account of jet formation under the experimental conditions and also make predictions beyond experimental conditions which can be verified in future experiments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

By direct numerical simulation of the time-dependent Gross-Pitaevskii equation, we study different aspects of the localization of a noninteracting ideal Bose-Einstein condensate (BEC) in a one-dimensional bichromatic quasiperiodic optical-lattice potential. Such a quasiperiodic potential, used in a recent experiment on the localization of a BEC, can be formed by the superposition of two standing-wave polarized laser beams with different wavelengths. We investigate the effect of the variation of optical amplitudes and wavelengths on the localization of a noninteracting BEC. We also simulate the nonlinear dynamics when a harmonically trapped BEC is suddenly released into a quasiperiodic potential, as done experimentally in a laser speckle potential. We finally study the destruction of the localization in an interacting BEC due to the repulsion generated by a positive scattering length between the bosonic atoms. © 2009 The American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the statics and dynamics of a dipolar Bose-Einstein condensate (BEC) droplet bound by interspecies contact interaction in a trapped nondipolar BEC. Our findings are demonstrated in terms of stability plots of a dipolar 164Dy droplet bound in a trapped nondipolar 87Rb BEC with a variable number of 164Dy atoms and interspecies scattering length. A trapped nondipolar BEC of a fixed number of atoms can bind only a dipolar droplet containing fewer atoms than a critical number for the interspecies scattering length between two critical values. The shape and size (statics) as well as the small breathing oscillation (dynamics) of the dipolar BEC droplet are studied using numerical and variational solutions of a mean-field model. We also suggest an experimental procedure for achieving such a 164Dy droplet by relaxing the trap on the 164Dy BEC in a trapped binary 87Rb-164Dy mixture. © 2013 American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering length and the boson-boson scattering length. We predict the properties of the generated Faraday patterns and study the parameter regions where they can be excited. © 2013 American Physical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a superfluid cloud composed of a Bose-Einstein condensate oscillating within a magnetic trap (dipole mode) where, due to the existence of a Feshbach resonance, an effective periodic time-dependent modulation in the scattering length is introduced. Under this condition, collective excitations such as the quadrupole mode can take place. We approach this problem by employing both the Gaussian and the Thomas-Fermi variational Ansatze. The resulting dynamic equations are analyzed by considering both linear approximations and numerical solutions, where we observe coupling between dipole and quadrupole modes. Aspects of this coupling related to the variation of the dipole oscillation amplitude are analyzed. This may be a relevant effect in situations where oscillation in a magnetic field in the presence of a bias field B takes place, and should be considered in the interpretation of experimental results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A correlated two-body basis function is used to describe the three-dimensional bosonic clusters interacting via two-body van der Waals potential. We calculate the ground state and the zero orbital angular momentum excited states for Rb-N clusters with up to N = 40. We solve the many-particle Schrodinger equation by potential harmonics expansion method, which keeps all possible two-body correlations in the calculation and determines the lowest effective many-body potential. We study energetics and structural properties for such diffuse clusters both at dimer and tuned scattering length. The motivation of the present study is to investigate the possibility of formation of N-body clusters interacting through the van der Waals interaction. We also compare the system with the well studied He, Ne, and Ar clusters. We also calculate correlation properties and observe the generalised Tjon line for large cluster. We test the validity of the shape-independent potential in the calculation of the ground state energy of such diffuse cluster. These are the first such calculations reported for Rb clusters. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730972]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The existence and stability of three-dimensional (3D) solitons, in cross-combined linear and nonlinear optical lattices, are investigated. In particular, with a starting optical lattice (OL) configuration such that it is linear in the x-direction and nonlinear in the y-direction, we consider the z-direction either unconstrained (quasi-2D OL case) or with another linear OL (full 3D case). We perform this study both analytically and numerically: analytically by a variational approach based on a Gaussian ansatz for the soliton wavefunction and numerically by relaxation methods and direct integrations of the corresponding Gross-Pitaevskii equation. We conclude that, while 3D solitons in the quasi-2D OL case are always unstable, the addition of another linear OL in the z-direction allows us to stabilize 3D solitons both for attractive and repulsive mean interactions. From our results, we suggest the possible use of spatial modulations of the nonlinearity in one of the directions as a tool for the management of stable 3D solitons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For many years a combined analysis of pionic hydrogen and deuterium atoms has been known as a good tool to extract information on the isovector and especially on the isoscalar s-wave pN scattering length. However, given the smallness of the isoscalar scattering length, the analysis becomes useful only if the pion–deuteron scattering length is controlled theoretically to a high accuracy comparable to the experimental precision. To achieve the required few-percent accuracy one needs theoretical control over all isospin-conserving three-body pNN !pNN operators up to one order before the contribution of the dominant unknown (N†N)2pp contact term. This term appears at next-to-next-to-leading order in Weinberg counting. In addition, one needs to include isospin-violating effects in both two-body (pN) and three-body (pNN) operators. In this talk we discuss the results of the recent analysis where these isospin-conserving and -violating effects have been carefully taken into account. Based on this analysis, we present the up-to-date values of the s-wave pN scattering lengths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We combine theory and experiment to investigate five-body recombination in an ultracold gas of atomic cesium at negative scattering length. A refined theoretical model, in combination with extensive laboratory tunability of the interatomic interactions, enables the five-body resonant recombination rate to be calculated and measured. The position of the new observed recombination feature agrees with a recent theoretical prediction and supports the prediction of a family of universal cluster states at negative a that are tied to an Efimov trimer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experiments with ultracold atoms in optical lattice have become a versatile testing ground to study diverse quantum many-body Hamiltonians. A single-band Bose-Hubbard (BH) Hamiltonian was first proposed to describe these systems in 1998 and its associated quantum phase-transition was subsequently observed in 2002. Over the years, there has been a rapid progress in experimental realizations of more complex lattice geometries, leading to more exotic BH Hamiltonians with contributions from excited bands, and modified tunneling and interaction energies. There has also been interesting theoretical insights and experimental studies on “un- conventional” Bose-Einstein condensates in optical lattices and predictions of rich orbital physics in higher bands. In this thesis, I present our results on several multi- band BH models and emergent quantum phenomena. In particular, I study optical lattices with two local minima per unit cell and show that the low energy states of a multi-band BH Hamiltonian with only pairwise interactions is equivalent to an effec- tive single-band Hamiltonian with strong three-body interactions. I also propose a second method to create three-body interactions in ultracold gases of bosonic atoms in a optical lattice. In this case, this is achieved by a careful cancellation of two contributions in the pair-wise interaction between the atoms, one proportional to the zero-energy scattering length and a second proportional to the effective range. I subsequently study the physics of Bose-Einstein condensation in the second band of a double-well 2D lattice and show that the collision aided decay rate of the con- densate to the ground band is smaller than the tunneling rate between neighboring unit cells. Finally, I propose a numerical method using the discrete variable repre- sentation for constructing real-valued Wannier functions localized in a unit cell for optical lattices. The developed numerical method is general and can be applied to a wide array of optical lattice geometries in one, two or three dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the bound states of two spin-1/2 fermions interacting via a contact attraction (characterized by a scattering length) in the singlet channel in three-dimensional space in presence of a uniform non-Abelian gauge field. The configuration of the gauge field that generates a Rashba-type spin-orbit interaction is described by three coupling parameters (lambda(x),lambda(y),lambda(z)). For a generic gauge field configuration, the critical scattering length required for the formation of a bound state is negative, i.e., shifts to the ``BCS side'' of the resonance. Interestingly, we find that there are special high-symmetry configurations (e.g., lambda(x) = lambda(y) = lambda(z)) for which there is a two-body bound state for any scattering length however small and negative. Remarkably, the bound-state wave functions obtained for such configurations have nematic spin structure similar to those found in liquid He-3. Our results show that the BCS-BEC (Bose-Einstein condensation) crossover is drastically affected by the presence of a non-Abelian gauge field. We discuss possible experimental signatures of our findings both at high and low temperatures.