863 resultados para Asymptotic Behaviour


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contrast masking from parallel grating surrounds (doughnuts) and superimposed orthogonal masks have different characteristics. However, it is not known whether the saturation of the underlying suppression that has been found for parallel doughnut masks depends on (i) relative mask and target orientation, (ii) stimulus eccentricity or (iii) surround suppression. We measured contrast-masking functions for target patches of grating in the fovea and in the periphery for cross-oriented superimposed and doughnut masks and parallel doughnut masks. When suppression was evident, the factor that determined whether it accelerated or saturated was whether the mask stimulus was crossed or parallel. There are at least two interpretations of the asymptotic behaviour of the parallel surround mask. (1) Suppression arises from pathways that saturate with (mask) contrast. (2) The target is processed by a mechanism that is subject to surround suppression at low target contrasts, but a less sensitive mechanism that is immune from surround suppression ‘breaks through’ at higher target contrasts. If the mask can be made less potent, then masking functions should shift downwards, and sideways for the two accounts, respectively. We manipulated the potency of the mask by varying the size of the hole in a parallel doughnut mask. The results provided strong evidence for the first account but not the second. On the view that response compression becomes more severe progressing up the visual pathway, our results suggest that superimposed cross-orientation suppression precedes orientation tuned surround suppression. These results also reveal a previously unrecognized similarity between surround suppression and crowding (Pelli, Palomares, & Majaj, 2004).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assessment of the reliability of systems which learn from data is a key issue to investigate thoroughly before the actual application of information processing techniques to real-world problems. Over the recent years Gaussian processes and Bayesian neural networks have come to the fore and in this thesis their generalisation capabilities are analysed from theoretical and empirical perspectives. Upper and lower bounds on the learning curve of Gaussian processes are investigated in order to estimate the amount of data required to guarantee a certain level of generalisation performance. In this thesis we analyse the effects on the bounds and the learning curve induced by the smoothness of stochastic processes described by four different covariance functions. We also explain the early, linearly-decreasing behaviour of the curves and we investigate the asymptotic behaviour of the upper bounds. The effect of the noise and the characteristic lengthscale of the stochastic process on the tightness of the bounds are also discussed. The analysis is supported by several numerical simulations. The generalisation error of a Gaussian process is affected by the dimension of the input vector and may be decreased by input-variable reduction techniques. In conventional approaches to Gaussian process regression, the positive definite matrix estimating the distance between input points is often taken diagonal. In this thesis we show that a general distance matrix is able to estimate the effective dimensionality of the regression problem as well as to discover the linear transformation from the manifest variables to the hidden-feature space, with a significant reduction of the input dimension. Numerical simulations confirm the significant superiority of the general distance matrix with respect to the diagonal one.In the thesis we also present an empirical investigation of the generalisation errors of neural networks trained by two Bayesian algorithms, the Markov Chain Monte Carlo method and the evidence framework; the neural networks have been trained on the task of labelling segmented outdoor images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60F05, 60B10.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 05A16, 05A17.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C40, 30D50, 30E10, 30E15, 42C05.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35Lxx, 35Pxx, 81Uxx, 83Cxx.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the present work the bifurcational behaviour of the solutions of Rayleigh equation and corresponding spatially distributed system is being analysed. The conditions of oscillatory and monotonic loss of stability are obtained. In the case of oscillatory loss of stability, the analysis of linear spectral problem is being performed. For nonlinear problem, recurrent formulas for the general term of the asymptotic approximation of the self-oscillations are found, the stability of the periodic mode is analysed. Lyapunov-Schmidt method is being used for asymptotic approximation. The correlation between periodic solutions of ODE and PDE is being investigated. The influence of the diffusion on the frequency of self-oscillations is being analysed. Several numerical experiments are being performed in order to support theoretical findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the small-time behavior of interfaces of zero contact angle solutions to the thin-film equation. For a certain class of initial data, through asymptotic analyses, we deduce a wide variety of behavior for the free boundary point. These are supported by extensive numerical simulations. © 2007 Society for Industrial and Applied Mathematics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

0We study the exact solution for a two-mode model describing coherent coupling between atomic and molecular Bose-Einstein condensates (BEC), in the context of the Bethe ansatz. By combining an asymptotic and numerical analysis, we identify the scaling behaviour of the model and determine the zero temperature expectation value for the coherence and average atomic occupation. The threshold coupling for production of the molecular BEC is identified as the point at which the energy gap is minimum. Our numerical results indicate a parity effect for the energy gap between ground and first excited state depending on whether the total atomic number is odd or even. The numerical calculations for the quantum dynamics reveals a smooth transition from the atomic to the molecular BEC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MSC 2010: 33E12, 30A10, 30D15, 30E15

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale p*. This scale appears to vanish faster than the Compton scale, mc, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behaviour observed on the lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers a stochastic SIR (susceptible-infective-removed) epidemic model in which individuals may make infectious contacts in two ways, both within 'households' (which for ease of exposition are assumed to have equal size) and along the edges of a random graph describing additional social contacts. Heuristically-motivated branching process approximations are described, which lead to a threshold parameter for the model and methods for calculating the probability of a major outbreak, given few initial infectives, and the expected proportion of the population who are ultimately infected by such a major outbreak. These approximate results are shown to be exact as the number of households tends to infinity by proving associated limit theorems. Moreover, simulation studies indicate that these asymptotic results provide good approximations for modestly-sized finite populations. The extension to unequal sized households is discussed briefly.