994 resultados para Astronautics in geodesy.
Resumo:
larity solution is obtained for laminar 3D constant pressure flow with lateral streamline divergence. The similarity solution is shown to reduce to a Blasius solution for 2D flow over a flat plate. Measurements of velocity profiles are made to compare the similarity solution and are found to be in excellent agreement with the prediction
Resumo:
The contributions of full-wake dynamics in trim analysis are demonstrated for finding the control inputs and periodic responses simultaneously, as well as in Floquet eigenanalysis for finding the damping levels. The equations of flap bending, lag bending, and torsion are coupled with a three-dimensional, finite state wake, and low-frequency (<1/rev) to high frequency (>1/rev) multiblade modes are considered. Full blade-wake dynamics is used in trim analysis and Floquet eigenanalysis. A uniform cantilever blade in trimmed flight is investigated over a range of thrust levels, advance ratios, number of blades, and blade torsional frequencies. The investigation includes the convergence characteristics of control inputs, periodic responses, and damping levels with respect to the number of spatial azimuthal harmonics and radial shape functions in the wake representation. It also includes correlation with the measured lag damping of a three-bladed untrimmed rotor. The parametric study shows the dominant influence of wake dynamics on control inputs, periodic responses, and damping levels, and wake theory generally improves the correlation.
Resumo:
A controller design for vibration control and alignment maintenance at critical location is developed in a generic launch vehicle whose equipment bay (EB) houses the main inertial platform. The controller uses active control to reduce the attitude disturbance in the attitude at the EB due to elastic deformation. The vibration energy is redistributed by the technique of vibration confinement, which enables the response at the EB to reach its steady state faster in the remaining portion of the structure. (AIAA)
Resumo:
A fuzzy logic system is developed for helicopter rotor system fault isolation. Inputs to the fuzzy logic system are measurement deviations of blade bending and torsion response and vibration from a "good" undamaged helicopter rotor. The rotor system measurements used are flap and lag bending tip deflections, elastic twist deflection at the tip, and three forces and three moments at the rotor hub. The fuzzy logic system uses rules developed from an aeroelastic model of the helicopter rotor with implanted faults to isolate the fault while accounting for uncertainty in the measurements. The faults modeled include moisture absorption, loss of trim mass, damaged lag damper, damaged pitch control system, misadjusted pitch link, and damaged flap. Tests with simulated data show that the fuzzy system isolates rotor system faults with an accuracy of about 90-100%. Furthermore, the fuzzy system is robust and gives excellent results, even when some measurements are not available. A rule-based expert system based on similar rules from the aeroelastic model performs much more poorly than the fuzzy system in the presence of high levels of uncertainty.
Resumo:
Experiments were carried out investigating the features of mean and unsteady surface pressure fluctuations in boat-tail separated flows relevant to launch vehicle configurations at transonic speeds. The tests were performed on a generic axisymmetric body in the Mach-number range of 0.7-1.2, and the important geometrical parameters, namely, the boat-tail angle and diameter ratio, were varied systematically. The measurements made included primarily the mean and unsteady surface-pressure fluctuations on nine different model configurations. Flow-visualization studies employing a surface oil flow, and schlieren techniques were carried out to infer features like boundary-layer separation, reattachment, and shock waves in the flow. The features of mean and fluctuating surface pressures are discussed in detail including aspects of similarity. It has been observed that, on a generic configuration employed in the present study, the maximum levels of surface-pressure fluctuations in the reattachment zone are appreciably lower than those found on launch vehicle configurations having a bulbous or hammerhead nose shape. A simple correlation is suggested for the maximum value of rms pressure fluctuations in the reattachment zone at different freestream Mach numbers.
Resumo:
This paper is focused on the development of a model for predicting the mean drop size in effervescent sprays. A combinatorial approach is followed in this modeling scheme, which is based on energy and entropy principles. The model is implemented in cascade in order to take primary breakup (due to exploding gas bubbles) and secondary breakup (due to shearing action of surrounding medium) into account. The approach in this methodology is to obtain the most probable drop size distribution by maximizing the entropy while satisfying the constraints of mass and energy balance. The comparison of the model predictions with the past experimental data is presented for validation. A careful experimental study is conducted over a wide range of gas-to-liquid ratios, which shows a good agreement with the model predictions: It is observed that the model gives accurate results in bubbly and annular flow regimes. However, discrepancies are observed in the transitional slug flow regime of the atomizer.
Resumo:
The effect of structural and aerodynamic uncertainties on the performance predictions of a helicopter is investigated. An aerodynamic model based on blade element and momentum theory is used to predict the helicopter performance. The aeroelastic parameters, such as blade chord, rotor radius, two-dimensional lift-curve slope, blade profile drag coefficient, rotor angular velocity, blade pitch angle, and blade twist rate per radius of the rotor, are considered as random variables. The propagation of these uncertainties to the performance parameters, such as thrust coefficient and power coefficient, are studied using Monte Carlo Simulations. The simulations are performed with 100,000 samples of structural and aerodynamic uncertain variables with a coefficient of variation ranging from 1 to 5%. The scatter in power predictions in hover, axial climb, and forward flight for the untwisted and linearly twisted blades is studied. It is found that about 20-25% excess power can be required by the helicopter relative to the determination predictions due to uncertainties.
Resumo:
A method for modelling and predicting the noise generated by the interaction between the unsteady wake shed from the rotor and a downstream row of stators in a modern ultra-high bypass ducted turbofan engine is described. An analytically-based model is developed to account for three main features of the problem. First, the way in which a typical unsteady wake disturbance from the rotor interacts and is distorted by the mean swirling flow as it propagates downstream. The analysis allows for the inclusion of mean entropy gradients and entropy perturbations. Second, the effects of real stator-blade geometry and proper representation of the genuinely three-dimensional nature of the problem. Third, to model the propagation of the resulting noise back upstream in mean swirling flow. The analytical nature of the problem allows for the inclusion of all wake harmonics and enables the response at all blade passing frequencies to be determined. Example results are presented for an initial wake distribution corresponding to a genuine rotor configuration. Comparisons between numerical data and the asymptotic model for the wake evolution are made. Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.