860 resultados para Associative Algebras With Polynomial Identities
Resumo:
We consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We characterize the hermitian levels of quaternion and octonion algebras and of an 8-dimensional algebra D over the ground field F, constructed using a weak version of the Cayley-Dickson double process. It is shown that all values of the hermitian levels of quaternion algebras with the hat-involution also occur as hermitian levels of D. We give some limits to the levels of the algebra D over some ground field. © Soc. Paran. de Mat.
Resumo:
In this paper, we present an analysis of the resonant response of modified triangular metallic nanoparticles with polynomial sides. The particles are illuminated by an incident plane wave and the method of moments is used to solve numerically the electromagnetic scattering problem. We investigate spectral response and near field distribution in function of the length and polynomial order of the nanoparticles. Our results show that in the analyzed wavelength range (0.5-1.8) µm these particles possess smaller number of resonances and their resonant wavelengths, near field enhancement and field confinement are higher than those of the conventional triangular particle with linear sides.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We describe (braided-) commutative algebras with non-degenerate multiplicative form in certain braided monoidal categories, corresponding to abelian metric Lie algebras (so-called Drinfeld categories). We also describe local modules over these algebras and classify commutative algebras with a finite number of simple local modules.
Resumo:
This thesis is dedicated to the Tits-Kantor-Koecher (TKK) construction which establishes a bijective correspondence between unital Jordan algebras and shortly graded Lie algebras with Z-grading induced by an sl_2-triple. It is based on the observation that if g is a Lie algebra with a short Z-grading and f lies in g_1, then the formula ab=[[a,f],b] defines a structure of a Jordan algebra on g_{-1}. The TKK construction has been extended to Jordan triple systems and, more recently, to the so-called Kantor triple systems. These generalizations are studied in the thesis.
Resumo:
We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.
Resumo:
We present applicative theories of words corresponding to weak, and especially logarithmic, complexity classes. The theories for the logarithmic hierarchy and alternating logarithmic time formalise function algebras with concatenation recursion as main principle. We present two theories for logarithmic space where the first formalises a new two-sorted algebra which is very similar to Cook and Bellantoni's famous two-sorted algebra B for polynomial time [4]. The second theory describes logarithmic space by formalising concatenation- and sharply bounded recursion. All theories contain the predicates WW representing words, and VV representing temporary inaccessible words. They are inspired by Cantini's theories [6] formalising B.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
AMS Subj. Classification: 03C05, 08B20
Resumo:
We are able to give a complete description of four-dimensional Lie algebras g which satisfy the tame-compatible question of Donaldson for all almost complex structures J on g are completely described. As a consequence, examples are given of (non-unimodular) four-dimensional Lie algebras with almost complex structures which are tamed but not compatible with symplectic forms.? Note that Donaldson asked his question for compact four-manifolds. In that context, the problem is still open, but it is believed that any tamed almost complex structure is in fact compatible with a symplectic form. In this presentation, I will define the basic objects involved and will give some insights on the proof. The key for the proof is translating the problem into a Linear Algebra setting. This is a joint work with Dr. Draghici.
Resumo:
In the book ’Quadratic algebras’ by Polishchuk and Positselski [23] algebras with a small number of generators (n = 2, 3) are considered. For some number r of relations possible Hilbert series are listed, and those appearing as series of Koszul algebras are specified. The first case, where it was not possible to do, namely the case of three generators n = 3 and six relations r = 6 is formulated as an open problem. We give here a complete answer to this question, namely for quadratic algebras with dimA_1 = dimA_2 = 3, we list all possible Hilbert series, and find out which of them can come from Koszul algebras, and which can not. As a consequence of this classification, we found an algebra, which serves as a counterexample to another problem from the same book [23] (Chapter 7, Sec. 1, Conjecture 2), saying that Koszul algebra of finite global homological dimension d has dimA_1 > d. Namely, the 3-generated algebra A given by relations xx + yx = xz = zy = 0 is Koszul and its Koszul dual algebra A^! has Hilbert series of degree 4: HA! (t) = 1 + 3t + 3t^2 + 2t^3 + t^4, hence A has global homological dimension 4.
Resumo:
In this thesis we introduce nuclear dimension and compare it with a stronger form of the completely positive approximation property. We show that the approximations forming this stronger characterisation of the completely positive approximation property witness finite nuclear dimension if and only if the underlying C*-algebra is approximately finite dimensional. We also extend this result to nuclear dimension at most omega. We review interactions between separably acting injective von Neumann algebras and separable nuclear C*-algebras. In particular, we discuss aspects of Connes' work and how some of his strategies have been used by C^*-algebraist to estimate the nuclear dimension of certain classes of C*-algebras. We introduce a notion of coloured isomorphisms between separable unital C*-algebras. Under these coloured isomorphisms ideal lattices, trace spaces, commutativity, nuclearity, finite nuclear dimension and weakly pure infiniteness are preserved. We show that these coloured isomorphisms induce isomorphisms on the classes of finite dimensional and commutative C*-algebras. We prove that any pair of Kirchberg algebras are 2-coloured isomorphic and any pair of separable, simple, unital, finite, nuclear and Z-stable C*-algebras with unique trace which satisfy the UCT are also 2-coloured isomorphic.
Resumo:
Using Macaulay's correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
Resumo:
The next phase envisioned for the World Wide Web is automated ad-hoc interaction between intelligent agents, web services, databases and semantic web enabled applications. Although at present this appears to be a distant objective, there are practical steps that can be taken to advance the vision. We propose an extension to classical conceptual models to allow the definition of application components in terms of public standards and explicit semantics, thus building into web-based applications, the foundation for shared understanding and interoperability. The use of external definitions and the need to store outsourced type information internally, brings to light the issue of object identity in a global environment, where object instances may be identified by multiple externally controlled identification schemes. We illustrate how traditional conceptual models may be augmented to recognise and deal with multiple identities.