115 resultados para Ascidian Ciona-savignyi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of spatial competition among colonial marine organisms are often evident in the contact zones between colonies. These effects are especially pronounced when the interaction results in overgrowth or necrosis of one of the competitors. Ascidians, one of the dominant taxonomic groups in subtidal sessile communities, have specialized morula cells that provide a defense against microbial infections. Injuries resulting from interspecific competitive interactions might also act as a stimulus for this defensive mechanism. Therefore, we expected to see the recruitment of morula cells in tissues near competitor contact zones. To test the hypothesis that spatial competition elicits this immune response, we placed colonies of the ascidian Didemnum perlucidum from southeastern Brazil in four different types of competitive situations: (1) overgrowth of the competitor, (2) stand-off interactions, (3) overgrowth by the competitor, and (4) free of competitors. Our results indicate that competitive interactions increase the population of morula cells in contact zones, as more cells were observed in interactions that resulted in the overgrowth of individuals of D. perlucidum, and fewer cells were observed in colonies that were free of competitors. We identified the defensive function of the morula cells by showing the presence of the enzyme phenoloxidase within its vacuoles. Phenoloxidase is a widespread enzyme among animals and plants, and is frequently used in defense by synthesizing toxic quinones from polyphenol substrates. This is the first study to document the presence of morula cells in didemnid ascidians and the mobilization of these cells by spatial competition by heterospecifics, and one of the first studies to identify phenoloxidase activity in morula cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene number can be considered a pragmatic measure of biological complexity, but reliable data is scarce. Estimates for vertebrates are 50-100,000 genes per haploid genome, whereas invertebrate estimates fall below 25,000. We wished to test the hypothesis that the origin of vertebrates coincided with extensive gene creation. A prediction is that gene number will differ sharply between invertebrate and vertebrate members of the chordate phylum. A gene number estimation method requiring limited sequence sampling of genomic DNA was developed and validated by using data for Caenorhabditis elegans. Using the method, we estimated that the invertebrate chordate Ciona intestinalis has 15,500 protein-coding genes (±3,700). This number is significantly lower than gene numbers of vertebrate chordates, but similar to those of invertebrates in distantly related phyla. The data indicate that evolution of vertebrates was accompanied by a dramatic increase in protein-coding capacity of the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A colonial protochordate, Botryllus schlosseri, undergoes a natural transplantation reaction in the wild that results alternatively in colony fusion (chimera formation) or inflammatory rejection. A single, highly polymorphic histocompatibility locus (called Fu/HC) is responsible for rejection versus fusion. Gonads are seeded and gametogenesis can occur in colonies well after fusion, and involves circulating germ-line progenitors. Buss proposed that colonial organisms might develop self/non-self histocompatibility systems to limit the possibility of interindividual germ cell “parasitism” (GCP) to histocompatible kin [Buss, L. W. (1982) Proc. Natl. Acad. Sci. USA 79, 5337–5341 and Buss, L. W. (1987) The Evolution of Individuality (Princeton Univ. Press, Princeton]. Here we demonstrate in laboratory and field experiments that both somatic cell and (more importantly) germ-line parasitism are a common occurrence in fused chimeras. These experiments support the tenet in Buss’s hypothesis that germ cell and somatic cell parasitism can occur in fused chimeras and that a somatic appearance may mask the winner of a gametic war. They also provide an interesting challenge to develop formulas that describe the inheritance of competing germ lines rather than competing individuals. The fact that fused B. schlosseri have higher rates of GCP than unfused colonies additionally provides a rational explanation for the generation and maintenance of a high degree of Fu/HC polymorphism, largely limiting GCP to sibling offspring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The B-line presumptive muscle cells of ascidian embryos have extensive potential for self-differentiation dependent on determinants prelocalized in the myoplasm of fertilized eggs. Ascidian larval muscle cells therefore provide an experimental system with which to explore an intrinsic genetic program for autonomous specification of embryonic cells. Experiments with egg fragments suggested that maternal mRNAs are one of the components of muscle determinants. Expression of larval muscle actin genes begins as early as the 32-cell stage, prior to the developmental fate restriction of the cells. The timing of initiation of the actin gene expression proceeds the expression of an ascidian homologue of vertebrate MyoD by a few hours. Mutations in the proximal E-box of the 5' flanking region of the actin genes did not alter the promoter activity for muscle-specific expression of reporter gene. These results, together with results of deletion constructs of fusion genes, suggest that muscle determinants regulate directly, or indirectly via regulatory factors other than MyoD, the transcription of muscle-specific structural genes leading to the terminal differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seriocarpa rhizoides Diehl 1969 was collected in abundance from the calcareous sand of the Josephine Bank (between Portugal and Madeira) during the "Meteor" seamount cruises in 1967. Attachment in this loose soft substratum is effected by fine anchoring strands of the tests. Two irregular series of small polycarp-like hermaphrodite bodies which are embedded in a connective tissue lie directly below the endostyle, forming a tubular compound gonad, but without common ducts. The intermediate nature of the reproductive system with respect to arrangement and structure increases our knowledge about the polygenetic relations of the stylid-genera. Some of the hitherto known ecological facts point to the presumed "seamounts effect" on this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comptes-rendus Acad. Sci. France. 1882. 94. 1727-1729.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary metabolites synthesised by sessile invertebrates appear to play a role in creating and maintaining space on hard substrata by repelling competitors. In this study, we investigated the responses of the larvae of the ascidian Herdmania curvata to haliclonacyclamine A (HA), the major component of a suite of cytotoxic alkaloids extracted from the sponge Haliclona sp. 628. Both Haliclona sp. 628 and Herdmania curvata inhabit the crest and slope of Heron Island Reef. High rates of settlement were induced in competent H. curvata larvae by a range of concentrations of HA, all lower than that naturally occurring in the sponge. HA did not induce precompetent larvae to settle. Although early metamorphosis of HA-induced larvae was normal, larvae exposed to all but the lowest concentration of HA were developmentally arrested after completion of tail resorption, at about 4 h after the initiation of metamorphosis. These postlarvae underwent extensive cellular necrosis within 24 h. We also demonstrate that the addition of a transcriptional inhibitor, actinomycin D, to larvae also causes inhibition of metamorphosis after tail resorption is completed. Analyses of incorporation of radiolabelled nucleotides to measure levels of transcription during normal development and after the addition of the transcriptional inhibitor indicate that there is a significant burst of transcriptional activity just after tail resorption is completed. Despite inhibiting metamorphosis at the same stage as actinomycin D, HA increases initial rates of RNA synthesis after induction of metamorphosis in a manner similar to that observed in normal postlarvae until the onset of cellular necrosis. We conclude that HA initially induces H. curvata larvae to settle and progress through early metamorphosis possibly by engaging the same pathway as other artificial and environmental cues but subsequently inhibits completion of metamorphosis, resulting in death of the postlarvae. Since HA does not affect overall transcription rates, it appears to disrupt another important developmental process during early metamorphosis.