789 resultados para Artificial neural network models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Brain Stimulator devices are becoming widely used for therapeutic benefits in movement disorders such as Parkinson's disease. Prolonging the battery life span of such devices could dramatically reduce the risks and accumulative costs associated with surgical replacement. This paper demonstrates how an artificial neural network can be trained using pre-processing frequency analysis of deep brain electrode recordings to detect the onset of tremor in Parkinsonian patients. Implementing this solution into an 'intelligent' neurostimulator device will remove the need for continuous stimulation currently used, and open up the possibility of demand-driven stimulation. Such a methodology could potentially decrease the power consumption of a deep brain pulse generator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Pseudomonas syringae can cause stem necrosis and canker in a wide range of woody species including cherry, plum, peach, horse chestnut and ash. The detection and quantification of lesion progression over time in woody tissues is a key trait for breeders to select upon for resistance. Results In this study a general, rapid and reliable approach to lesion quantification using image recognition and an artificial neural network model was developed. This was applied to screen both the virulence of a range of P. syringae pathovars and the resistance of a set of cherry and plum accessions to bacterial canker. The method developed was more objective than scoring by eye and allowed the detection of putatively resistant plant material for further study. Conclusions Automated image analysis will facilitate rapid screening of material for resistance to bacterial and other phytopathogens, allowing more efficient selection and quantification of resistance responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esse trabalho tem por objetivo o desenvolvimento de um sistema inteligente para detecção da queima no processo de retificação tangencial plana através da utilização de uma rede neural perceptron multi camadas, treinada para generalizar o processo e, conseqüentemente, obter o limiar de queima. em geral, a ocorrência da queima no processo de retificação pode ser detectada pelos parâmetros DPO e FKS. Porém esses parâmetros não são eficientes nas condições de usinagem usadas nesse trabalho. Os sinais de emissão acústica e potência elétrica do motor de acionamento do rebolo são variáveis de entrada e a variável de saída é a ocorrência da queima. No trabalho experimental, foram empregados um tipo de aço (ABNT 1045 temperado) e um tipo de rebolo denominado TARGA, modelo ART 3TG80.3 NVHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method of identifying morphological attributes that classify wear particles in relation to the wear process from which they originate and permit the automatic identification without human expertise. The method is based on the use of Multi Layer Perceptron (MLP) for analysis of specific types of microscopic wear particles. The classification of the wear particles was performed according to their morphological attributes of size and aspect ratio, among others. (C) 2010 Journal of Mechanical Engineering. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a non-model based technique to detect and locate structural damage with the use of artificial neural networks. This method utilizes high frequency structural excitation (typically greater than 30 kHz) through a surface-bonded piezoelectric sensor/actuator to detect changes in structural point impedance due to the presence of damage. Two sets of artificial neural networks were developed in order to detect, locate and characterize structural damage by examining changes in the measured impedance curves. A simulation beam model was developed to verify the proposed method. An experiment was successfully performed in detecting damage on a 4-bay structure with bolted-joints, where the bolts were progressively released.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents two different approaches to detect, locate, and characterize structural damage. Both techniques utilize electrical impedance in a first stage to locate the damaged area. In the second stage, to quantify the damage severity, one can use neural network, or optimization technique. The electrical impedance-based, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations, this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors, and therefore, it is able to detect the damage in its early stage. Optimization approaches must be used for the case where a good condensed model is known, while neural network can be also used to estimate the nature of damage without prior knowledge of the model of the structure. The paper concludes with an experimental example in a welded cubic aluminum structure, in order to verify the performance of these two proposed methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a new modeling method, support vector regression (SVR) has been regarded as the state-of-the-art technique for regression and approximation. In this study, the SVR models had been introduced and developed to predict body and carcass-related characteristics of 2 strains of broiler chicken. To evaluate the prediction ability of SVR models, we compared their performance with that of neural network (NN) models. Evaluation of the prediction accuracy of models was based on the R-2, MS error, and bias. The variables of interest as model output were BW, empty BW, carcass, breast, drumstick, thigh, and wing weight in 2 strains of Ross and Cobb chickens based on intake dietary nutrients, including ME (kcal/bird per week), CP, TSAA, and Lys, all as grams per bird per week. A data set composed of 64 measurements taken from each strain were used for this analysis, where 44 data lines were used for model training, whereas the remaining 20 lines were used to test the created models. The results of this study revealed that it is possible to satisfactorily estimate the BW and carcass parts of the broiler chickens via their dietary nutrient intake. Through statistical criteria used to evaluate the performance of the SVR and NN models, the overall results demonstrate that the discussed models can be effective for accurate prediction of the body and carcass-related characteristics investigated here. However, the SVR method achieved better accuracy and generalization than the NN method. This indicates that the new data mining technique (SVR model) can be used as an alternative modeling tool for NN models. However, further reevaluation of this algorithm in the future is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex biological systems require sophisticated approach for analysis, once there are variables with distinct measure levels to be analyzed at the same time in them. The mouse assisted reproduction, e.g. superovulation and viable embryos production, demand a multidisciplinary control of the environment, endocrinologic and physiologic status of the animals, of the stressing factors and the conditions which are favorable to their copulation and subsequently oocyte fertilization. In the past, analyses with a simplified approach of these variables were not well succeeded to predict the situations that viable embryos were obtained in mice. Thereby, we suggest a more complex approach with association of the Cluster Analysis and the Artificial Neural Network to predict embryo production in superovulated mice. A robust prediction could avoid the useless death of animals and would allow an ethic management of them in experiments requiring mouse embryo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental research on the use of eddy current testing (ECT) and artificial neural networks (ANNs) in order to identify the gauge and position of steel bars immersed in concrete structures. The paper presents details of the ECT probe and concrete specimens constructed for the tests, and a study about the influence of the concrete on the values of measured voltages. After this, new measurements were done with a greater number of specimens, simulating a field condition and the results were used to generate training and validation vectors for multilayer perceptron ANNs. The results show a high percentage of correct identification with respect to both, the gauge of the bar and of the thickness of the concrete cover. © 2013 Copyright Taylor and Francis Group, LLC.