991 resultados para Artesian wells.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 μm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 μm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation. © 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methane hydrate, which is usually found under deep seabed or permafrost zones, is a potential energy resource for future years. Depressurization of horizontalwells bored in methane hydrate layer is considered as one possible method for hydrate dissociation and methane extraction from the hosting soil. Since hydrate is likely to behave as a bonding material to sandy soils, supported well construction is necessary to avoid wellcollapse due to the loss of the apparent cohesion during depressurization. This paper describes both physical and numerical modeling of such horizontal support wells. The experimental part involves depressurization of small well models in a large pressure cell, while the numerical part simulates the corresponding problem. While the experiment models simulate only gas saturated initial conditions, the numerical analysis simulates both gas-saturated and more realistic water-saturated conditions based on effective stress coupled flow-deformation formulation of these three phases. © 2006 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscopy (AFM) and scanning electron microscopy (SEM) with cathodoluminescence (CL) were performed on exactly the same defects in a blue-emitting InGaN/GaN multiple quantum well (QW) sample enabling the direct correlation of the morphology of an individual defect with its emission properties. The defects in question are observed in AFM and SEM as a trench partially or fully enclosing a region of the QW having altered emission properties. Their sub-surface structure has previously been shown to consist of a basal plane stacking fault (BSF) in the plane of the QW stack, and a stacking mismatch boundary (SMB) which opens up into a trench at the sample surface. In CL, the material enclosed by the trench may emit more or less intensely than the surrounding material, but always exhibits a redshift relative to the surrounding material. A strong correlation exists between the width of the trench and both the redshift and the intensity ratio, with the widest trenches surrounding regions which exhibit the brightest and most redshifted emission. Based on studies of the evolution of the trench width with the number of QWs from four additional MQW samples, we conclude that in order for a trench defect to emit intense, strongly redshifted light, the BSF must be formed in the early stages of the growth of the QW stack. The data suggest that the SMB may act as a non-radiative recombination center. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on an extensive analysis of the electroluminescence characteristics of InGaN-based LEDs with color-coded structure, i.e., with a triple quantum well structure in which each quantum well has a different indium content. The analysis is based on combined electroluminescence measurements and two-dimensional simulations, carried out at different current and temperature levels. Results indicate that (i) the efficiency of each of the quantum wells strongly depends on device operating conditions (current and temperature); (ii) at low current and temperature levels, only the quantum well closer to the p-side has a significant emission; (iii) emission from the other quantum wells is favored at high current levels. The role of carrier injection, hole mobility, carrier density and non-radiative recombination in determining the relative intensity of the quantum wells is discussed in the text. © 2013 The Japan Society of Applied Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We numerically modeled the spatio-temporal dynamics of Dicke superradiance in GaN/InGaN heterostructure quantum wells in a ridge waveguide cavity. Model predictions envisage ultrashort pulses of intensities superior to what can be obtained in mode-locked lasers. ©2010 IEEE.