391 resultados para Aquifers.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel methodology has been developed to quantify important saltwater intrusion parameters in a sandbox style experiment using image analysis. Existing methods found in the literature are based mainly on visual observations, which are subjective, labour intensive and limits the temporal and spatial resolutions that can be analysed. A robust error analysis was undertaken to determine the optimum methodology to convert image light intensity to concentration. Results showed that defining a relationship on a pixel-wise basis provided the most accurate image to concentration conversion and allowed quantification of the width of mixing zone between the saltwater and freshwater. A large image sample rate was used to investigate the transient dynamics of saltwater intrusion, which rendered analysis by visual observation unsuitable. This paper presents the methodologies developed to minimise human input and promote autonomy, provide high resolution image to concentration conversion and allow the quantification of intrusion parameters under transient conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the applications of a novel methodology to quantify saltwater intrusion parameters in laboratory-scale experiments. The methodology uses an automated image analysis procedure, minimizing manual inputs and the subsequent systematic errors that can be introduced. This allowed the quantification of the width of the mixing zone which is difficult to measure in experimental methods that are based on visual observations. Glass beads of different grain sizes were tested for both steady-state and transient conditions. The transient results showed good correlation between experimental and numerical intrusion rates. The experimental intrusion rates revealed that the saltwater wedge reached a steady state condition sooner while receding than advancing. The hydrodynamics of the experimental mixing zone exhibited similar
traits; a greater increase in the width of the mixing zone was observed in the receding saltwater wedge, which indicates faster fluid velocities and higher dispersion. The angle of intrusion analysis revealed the formation of a volume of diluted saltwater at the toe position when the saltwater wedge is prompted to recede. In addition, results of different physical repeats of the experiment produced an average coefficient of variation less than 0.18 of the measured toe length and width of the mixing zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite fractured hard rock aquifers underlying over 65% of Ireland, knowledge of key processes controlling groundwater recharge in these bedrock systems is inadequately constrained. In this study, we examined 19 groundwater-level hydrographs from two Irish hillslope sites underlain by hard rock aquifers. Water-level time-series in clustered monitoring wells completed at the subsoil, soil/bedrock interface, shallow and deep bedrocks were continuously monitored hourly over two hydrological years. Correlation methods were applied to investigate groundwater-level response to rainfall, as well as its seasonal variations. The results reveal that the direct groundwater recharge to the shallow and deep bedrocks on hillslope is very limited. Water-level variations within these geological units are likely dominated by slow flow rock matrix storage. The rapid responses to rainfall (⩽2 h) with little seasonal variations were observed to the monitoring wells installed at the subsoil and soil/bedrock interface, as well as those in the shallow or deep bedrocks at the base of the hillslope. This suggests that the direct recharge takes place within these units. An automated time-series procedure using the water-table fluctuation method was developed to estimate groundwater recharge from the water-level and rainfall data. Results show the annual recharge rates of 42–197 mm/yr in the subsoil and soil/bedrock interface, which represent 4–19% of the annual rainfall. Statistical analysis of the relationship between the rainfall intensity and water-table rise reveal that the low rainfall intensity group (⩽1 mm/h) has greater impact on the groundwater recharge rate than other groups (>1 mm/h). This study shows that the combination of the time-series analysis and the water-table fluctuation method could be an useful approach to investigate groundwater recharge in fractured hard rock aquifers in Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the spatial distribution of hydraulic conductivity (K) within an aquifer is critical for reliable predictions of solute transport and the development of effective groundwater management and/or remediation strategies. While core analyses and hydraulic logging can provide highly detailed information, such information is inherently localized around boreholes that tend to be sparsely distributed throughout the aquifer volume. Conversely, larger-scale hydraulic experiments like pumping and tracer tests provide relatively low-resolution estimates of K in the investigated subsurface region. As a result, traditional hydrogeological measurement techniques contain a gap in terms of spatial resolution and coverage, and they are often alone inadequate for characterizing heterogeneous aquifers. Geophysical methods have the potential to bridge this gap. The recent increased interest in the application of geophysical methods to hydrogeological problems is clearly evidenced by the formation and rapid growth of the domain of hydrogeophysics over the past decade (e.g., Rubin and Hubbard, 2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anomalous concentrations of fluoride in groundwater were identified in 19 drilling wells in the Salto-Indaiatuba region, Sao Paulo State, with an average concentration of 3.03 mg dm(-3) and a maximum of 6.95 mg dm(-3), which constitute a restriction for the water`s usage in terms of human consumption. The wells exploit water from the Tubarao Aquifer (sedimentary, granular) and Crystalline Aquifer (granitic, fractured), used for sanitary or industrial purposes. These groundwaters are typically HCO(3) and HCO(3)-SO(4) types, with high concentrations of HCO(3) -and Na(+) and high pH-values between 7.5 and 10.0. The highest concentrations of F-are associated to the Tubarao and Tubarao/Crystalline aquifer drilling wells. The presence of F-in groundwater is controlled by these high pH-values, alkalinity, and fluorine availability. The source of fluoride in the Tubarao and Crystalline Aquifers can be related to the percolation of hydrothermal fluids associated with Mesozoic lava flow, emplaced due to the opening of Atlantic Ocean and/or hydrolysis of fluorine-rich minerals and clay minerals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2009/1014/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2006/1002/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

U-modeled groundwater residence times were estimated by changes in U-234/U-238 activity ratio (AR) and U content of groundwaters from Pocos de Caldas city situated at the Pocos de Caldas alkaline massif, Brazil. The estimated ages are more realistic than others generated by the use of hydraulic conductivity data and available information about the weathering rate of rocks in the plateau. The U-234/U-238 AR and reciprocal of the dissolved U-content data also defined a ternary plot that allowed the calculation of the relative volume of three source waters for the mixed water. Such U-isotopes modeling for mixing calculations indicated that the dominant phase (68%) in the mixture is thermal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is focused on the study of saltwater intrusion in coastal aquifers, and in particular on the realization of conceptual schemes to evaluate the risk associated with it. Saltwater intrusion depends on different natural and anthropic factors, both presenting a strong aleatory behaviour, that should be considered for an optimal management of the territory and water resources. Given the uncertainty of problem parameters, the risk associated with salinization needs to be cast in a probabilistic framework. On the basis of a widely adopted sharp interface formulation, key hydrogeological problem parameters are modeled as random variables, and global sensitivity analysis is used to determine their influence on the position of saltwater interface. The analyses presented in this work rely on an efficient model reduction technique, based on Polynomial Chaos Expansion, able to combine the best description of the model without great computational burden. When the assumptions of classical analytical models are not respected, and this occurs several times in the applications to real cases of study, as in the area analyzed in the present work, one can adopt data-driven techniques, based on the analysis of the data characterizing the system under study. It follows that a model can be defined on the basis of connections between the system state variables, with only a limited number of assumptions about the "physical" behaviour of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of elevated uranium (U) in sandstone aquifers was investigated in the Upper Peninsula of Michigan, focusing on aquifers of the Jacobsville Sandstone. The hydrogeochemical controls on groundwater U concentrations were characterized using a combination of water sampling and spectral gamma-ray logging of sandstone cliffs and residential water wells. 235U/238U isotope ratios were consistent with naturally occurring U. Approximately 25% of the 270 wells tested had U concentrations above the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 30 μg/L, with elevated U generally occurring in localized clusters. Water wells were logged to determine whether groundwater U anomalies could be explained by the heterogeneous distribution of U in the sandstone. Not all wells with relative U enrichment in the sandstone produced water with U above the MCL, indicating that the effect of U enrichment in the sandstone may be modified by other hydrogeochemical factors. Well water had high redox, indicating U is in its highly soluble (VI) valence. Equilibrium modeling indicated that aqueous U is complexed with carbonates. In general, wells with elevated U concentrations had low 235U/238U activity ratios. However, in some areas U concentrations and 235U/238U activity ratios were simultaneously high, possibly indicating differences in rock-water interactions. Limited groundwater age dating suggested that residence time may also help explain variations in well water U concentrations. Low levels of U enrichment (4 to 30 ppm) in the Jacobsville sandstone may make wells in its oxidized aquifers at risk for U concentrations above the MCL. On average, U concentrations were highest in heavy mineral and clay layers and rip up conglomerates. Uranium concentrations above 4 ppm also occurred in siltstones, sandstones and conglomerates. Uranium enrichment was likely controlled by deposition processes, sorption to clays, and groundwater flow, which was controlled by permeability variations in the sandstone. Low levels of U enrichment were found at deltaic, lacustrine and alluvial fan deposits and were not isolated to specific depositional environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater with underground residence times between days and a few years have been investigated over more than 20 years from 487 remote sites located in different aquifer types in the Alpine belt. Analysis of the data reveals that groundwaters evolved in crystalline, evaporite, carbonate, molasse, and flysch aquifers can be clearly distinguished based on their major and trace element composition and degree of mineralisation. A further subdivision can be made even within one aquifer type based on the trace element compositions, which are characteristic for the lithologic environment. Major and trace element concentrations can be quantitatively described by interaction of the groundwater with the aquifer- specific mineralogy along the flow path. Because all investigated sites show minimal anthropogenic influences, the observed concentration ranges represent the natural background concentrations and can thus serve as a “geo-reference” for recent groundwaters from these five aquifer types. This “geo-reference” is particularly useful for the identification of groundwater contamination. It further shows that drinking water standards can be grossly exceeded for critical elements by purely natural processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and d13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years). This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl� contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Located in the northeastern region of Italy, the Venetian Plain (VP) is a sedimentary basin containing an extensively exploited groundwater system. The northern part is characterised by a large undifferentiated phreatic aquifer constituted by coarse grain alluvial deposits and recharged by local rainfalls and discharges from the rivers Brenta and Piave. The southern plain is characterised by a series of aquitards and sandy aquifers forming a well-defined artesian multi-aquifer system. In order to determine origins, transit times and mixing proportions of different components in groundwater (GW), a multi tracer study (H, He/He, C, CFC, SF, Kr, Ar, Sr/Sr, O, H, cations, and anions) has been carried out in VP between the rivers Brenta and Piave. The geochemical pattern of GW allows a distinction of the different water origins in the system, in particular based on View the MathML source HCO3-,SO42-,Ca/Mg,NO3-, O, H. A radiogenic Sr signature clearly marks GW originated from the Brenta and Tertiary catchments. End-member analysis and geochemical modelling highlight the existence of a mixing process involving waters recharged from the Brenta and Piave rivers, from the phreatic aquifer and from another GW reservoirs characterised by very low mineralization. Noble gas excesses in respect to atmospheric equilibrium occur in all samples, particularly in the deeper aquifers of the Piave river, but also in phreatic water of the undifferentiated aquifers. He–H ages in the phreatic aquifer and in the shallower level of the multi-aquifer system indicate recharge times in the years 1970–2008. The progression of H–He ages with the distance from the recharge areas together with initial tritium concentration (H + Hetrit) imply an infiltration rate of about 1 km/y and the absence of older components in these GW. SF and Kr data corroborate these conclusions. H − He ages in the deeper artesian aquifers suggest a dilution process with older, tritium free waters. C Fontes–Garnier model ages of the old GW components range from 1 to 12 ka, yielding an apparent GW velocity of about 1–10 m/y. Increase of radiogenic He follows the progression of C ages. Ar, radiogenic He and C tracers yield model-dependent age-ranges in overall good agreement once diffusion of C from aquitards, GW dispersion, lithogenic Ar production, and He production-rate heterogeneities are taken into account. The rate of radiogenic He increase with time, deduced by comparison with C model ages, is however very low compared to other studies. Comparison with C and C data obtained 40 years ago on the same aquifer system shows that exploitation of GW caused a significant loss of the old groundwater reservoir during this time.