995 resultados para Applied loads


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a wireless control strategy for parallel operation of three-phase four-wire inverters is proposed. A generalized situation is considered where the inverters are of unequal power ratings and the loads are nonlinear and unbalanced in nature. The proposed control algorithm exploits the potential of sinusoidal domain proportional+multiresonant controller ( in the inner voltage regulation loop) to make the system suitable for nonlinear and unbalanced loads with a simple and generalized structure of virtual output-impedance loop. The decentralized operation is achieved by using three-phase P/Q droop characteristics. The overall control algorithm helps to limit the harmonic contents and the degree of unbalance in the output-voltage waveform and to achieve excellent power-sharing accuracy in spite of mismatch in the inverter output impedances. Moreover, a synchronized turn on with consequent change over to the droop mode is applied for the new incoming unit in order to limit the circulating current completely. The simulation and experimental results from-1 kVA and -0.5 kVA paralleled units validate the effectiveness of the scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Edge Function method formerly developed by Quinlan(25) is applied to solve the problem of thin elastic plates resting on spring supported foundations subjected to lateral loads the method can be applied to plates of any convex polygonal shapes, however, since most plates are rectangular in shape, this specific class is investigated in this thesis. The method discussed can also be applied easily to other kinds of foundation models (e.g. springs connected to each other by a membrane) as long as the resulting differential equation is linear. In chapter VII, solution of a specific problem is compared with a known solution from literature. In chapter VIII, further comparisons are given. The problems of concentrated load on an edge and later on a corner of a plate as long as they are far away from other boundaries are also given in the chapter and generalized to other loading intensities and/or plates springs constants for Poisson's ratio equal to 0.2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-dimensional combustion code implementing the Conditional Moment Closure turbulent combustion model interfaced with a well-established RANS two- phase flow field solver has been employed to study a broad range of operating conditions for a heavy duty direct-injection common-rail Diesel engine. These conditions include different loads (25%, 50%, 75% and full load) and engine speeds (1250 and 1830 RPM) and, with respect to the fuel path, different injection timings and rail pressures. A total of nine cases have been simulated. Excellent agreement with experimental data has been found for the pressure traces and the heat release rates, without adjusting any model constants. The chemical mechanism used contains a detailed NOx sub-mechanism. The predicted emissions agree reasonably well with the experimental data considering the range of operating points and given no adjustments of any rate constants have been employed. In an effort to identify CPU cost reduction potential, various dimensionality reduction strategies have been assessed. Furthermore, the sensitivity of the predictions with respect to resolution in particular relating to the CMC grid has been investigated. Overall, the results suggest that the presented modelling strategy has considerable predictive capability concerning Diesel engine combustion without requiring model constant calibration based on experimental data. This is true particularly for the heat release rates predictions and, to a lesser extent, for NOx emissions where further progress is still necessary. © 2009 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many piled foundations have been destroyed under significant cyclic loads in earthquakes. Centrifuge modelling of a single pile subjected to cyclic loads has been conducted to investigate the influence of cyclic loads on the axial performance of the single pile. Different pile installation procedures were applied to compare the axial behaviour of different piles under cyclic loads. Pile head permanent settlements accumulated due to cyclic axial loads, and these increased with the increasing load amplitude. Also the pile head axial secant stiffness decreased with the increasing number of axial load cycles, and with increasing amplitude. Furthermore, the axial pile performance is influenced significantly by different installation methods. © 2010 ASCE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this work was to investigate stability in relation to the magnitude and direction of forces applied by the hand. The endpoint stiffness and joint stiffness of the arm were measured during a postural task in which subjects exerted up to 30% maximum voluntary force in each of four directions while controlling the position of the hand. All four coefficients of the joint stiffness matrix were found to vary linearly with both elbow and shoulder torque. This contrasts with the results of a previous study, which employed a force control task and concluded that the joint stiffness coefficients varied linearly with either shoulder or elbow torque but not both. Joint stiffness was transformed into endpoint stiffness to compare the effect on stability as endpoint force increased. When the joint stiffness coefficients were modeled as varying with the net torque at only one joint, as in the previous study, we found that hand position became unstable if endpoint force exceeded about 22 N in a specific direction. This did not occur when the joint stiffness coefficients were modeled as varying with the net torque at both joints, as in the present study. Rather, hand position became increasingly more stable as endpoint force increased for all directions of applied force. Our analysis suggests that co-contraction of biarticular muscles was primarily responsible for the increased stability. This clearly demonstrates how the central nervous system can selectively adapt the impedance of the arm in a specific direction to stabilize hand position when the force applied by the hand has a destabilizing effect in that direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Building integrated photovoltaics (BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influence on the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. Four different roofs are used to assess the impacts of BIPV on the building's heating-and-cooling loads; namely ventilated air-gap BIPV, non-ventilated (closed) air-gap BIPV, closeroof mounted BIPV, and the conventional roof with no PV and no air gap. One-dimensional transient models of four cases are derived to evaluate the PV performances and building cooling-and-heating loads across the different roofs in order to select the appropriate PV building integration method in Tianjin, China. The simulation results show that the PV roof with ventilated air-gap is suitable for the application in summer because this integration leads to the low cooling load and high PV conversion efficiency. The PV roof with ventilation air-gap has a high time lag and small decrement factor in comparison with other three roofs and has the same heat gain as the cool roof of absorptance 0.4. In winter, BIPV of non-ventilated air gap is more appropriate due to the combination of the low heating-load through the PV roof and high PV electrical output. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous piles are often subjected to the combination of cyclic axial and cyclic lateral loads in service, such as piled foundations for offshore platforms which may suffer swaying and rocking motions owing to wind and wave actions. In this research, centrifuge tests were conducted to investigate the effect of previous cyclic axial loads on the performance of pile groups subjected to subsequent cyclic lateral loads. Different pile installation methods were also applied to study the different behaviour of bored and jacked pile groups subjected to cyclic loads. During lateral load cycling, it is seen that cyclic axial loads to which pile groups were previously subjected could reduce the pile cap permanent lateral displacement in the first lateral load cycle but do not influence the incremental rate of permanent displacement in the following lateral load cycles. Moreover, it is found that previous cyclic axial loads could improve the pile cap cyclic lateral secant stiffness, especially for the pre-jacked pile group. When rocking motions were induced by cyclic lateral loads, pile groups subjected to cyclic axial loads before have smaller permanent settlement than those without the cyclic axial loading effect. The designers of piles that are intended to resist significant lateral loads without excessive deformations in service may wish to deploy cyclic axial preloading, accordingly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monopile is at present the most widely applied foundation concept for offshore wind turbines. Monopiles are designed utilising the well-established p-y method. Despite being well-established, there are multiple issues and limitations regarding its use. Investigation into the lateral behaviour of monopiles was carried out by performing monotonic and cyclic lateral load tests on an aluminium model monopile in the centrifuge. The monotonic responses and the behaviour of the monopile are described. Differences between the experimental and DNV design p-y curves and their implications are discussed. Efforts to characterise the shear force acting at the pile toe are also discussed. The results highlight the possible deficiencies of utilising the conventional DNV design p-y curves to design monopiles to resist cyclic lateral loads and the importance of research into the cyclic loading behaviour of monopiles to better improve their design to resist long-term cyclic loads. © 2014 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to account for interfacial friction of composite materials, an analytical model based on contact geometry and local friction is proposed. A contact area includes several types of microcontacts depending on reinforcement materials and their shape. A proportion between these areas is defined by in-plane contact geometry. The model applied to a fibre-reinforced composite results in the dependence of friction on surface fibre fraction and local friction coefficients. To validate this analytical model, an experimental study on carbon fibrereinforced epoxy composites under low normal pressure was performed. The effects of fibre volume fraction and fibre orientation were studied, discussed and compared with analytical model results. © Springer Science+Business Media, LLC 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper deals with the static analysis of pre-damaged Euler-Bernoulli beams with any number of unilateral cracks and subjected to tensile or compression forces combined with arbitrary transverse loads. The mathematical representation of cracks with a bilateral behaviour (i.e. always open) via Dirac delta functions is extended by introducing a convenient switching variable, which allows each crack to be open or closed depending on the sign of the axial strain at the crack centre. The proposed model leads to analytical solutions, which depend on four integration constants (to be computed by enforcing the boundary conditions) along with the Boolean switching variables associated with the cracks (whose role is to turn on and off the additional flexibility due to the presence of the cracks). An efficient computational procedure is also presented and numerically validated. For this purpose, the proposed approach is applied to two pre-damaged beams, with different damage and loading conditions, and the results so obtained are compared against those given by a standard finite element code (in which the correct opening of the cracks is pre-assigned), always showing a perfect agreement. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new method for calculating the individual generators’ shares in line flows, line losses and loads. The method is described and illustrated on active power flows, but it can be applied in the same way to reactive power flows. Starting from a power flow solution, the line flow matrix is formed. This matrix is used for identifying node types, tracing the power flow from generators downstream to loads, and to determine generators’ participation factors to lines and loads. Neither exhaustive search nor matrix inversion is required. Hence, the method is claimed to be the least computationally demanding amongst all of the similar methods.