982 resultados para Apical Membrane Antigen-1
Resumo:
Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: In human medicine, transfusion of ABO-mismatched platelets has been associated with shortened platelet survival and refractoriness to platelet transfusion because of expression of certain blood group antigens on platelets. It remains unknown if canine platelets express dog erythrocyte antigens (DEAs). Objective: The aim of this study was to develop a flow cytometric assay for DEA 1.1 and determine whether DEA 1.1 is present on canine platelets.Methods: Blood was collected from 172 clinically healthy dogs. Platelets and erythrocytes from each dog were tested for DEA 1.1 by flow cytometry using anti-DEA 1.1 blood-typing sera. Erythrocytes from each dog were also assessed for DEA 1.1 using a standard tube-typing test (T1) and using a second tube method (T2), if the flow cytometric and T1 results differed.Results: Using flow cytometry, DEA 1.1 was detected on erythrocytes of all 110 dogs shown by T1 or T2 testing to be DEA 1.1-positive. Initial results of the T1 test had a diagnostic accuracy of 93% (160 correct/ 172 tests). The frequency of erythrocyte DEA 1.1 positivity in previously untyped dogs (n = 118) was 56%. DEA 1.1 expression was not detected on platelets from DEA 1.1-positive dogs.Conclusions: Flow cytometry was a reliable method for detection of DEA 1.1 on canine erythrocytes. The absence of DEA 1.1 on platelets from DEA 1.1-positive dogs suggests that their platelets do not express DEA 1.1 and will not induce production of anti-DEA 1.1 antibodies that might lead to platelet refractoriness or reactions to a subsequent transfusion of DEA 1.1positive erythrocytes.
Resumo:
A 30-basepair (bp) deletion in the Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) gene has been reported in nasopharyngeal carcinoma and EBV-associated malignant lymphomas. Prior studies have found the deletion in about 10% to 28% of cases of Hodgkin's disease (HD), particularly in cases with aggressive histology. We studied the prevalence of 30-bp LMP1 gene deletion in EBV-positive HD in the United States (US) (12 cases) and Brazil (26 cases) with comparison to reactive lymphoid tissues (21 cases) and HD without EBV-positive Reed-Sternberg cells (15 cases). We studied the status of the LMP1 gene by Southern blot hybridization of polymerase chain reaction (PCR) products obtained after amplification with primers spanning the site of the deletion. We also performed EBV typing, EBER1 in situ hybridization, and LMP1 protein immunohistochemistry. EBV was detected in 12/26 (46%) cases of HD from the US and 26/27 (96%) cases of Brazilian HD. The 30-bp LMP1 gene deletion was observed in 4/12 (33%) cases of EBV-positive HD from US, and 12/26 (46%) cases of Brazilian EBV-positive HD, including 3 cases of type B EBV, as compared with 12/21 (57%) reactive lymphoid tissues and 9/15 (60%) cases of EBV-negative HD. US and Brazilian HD showed a higher prevalence of the 30-bp LMP1 gene deletion, compared with studies of others. The unexpected finding of high incidence of 30-bp deletion in LMP1 gene in reactive lymphoid tissue and HD without EBV-positive Reed-Sternberg cells suggests that this deletion may not be relevant to HD pathogenesis in most cases. Copyright (C) 1997 by W.B. Saunders Company.
Resumo:
Kaposi's sarcoma-associated herpesvirus (KSHV/human herpesvirus 8 [HHV8]) and Epstein-Barr virus (EBV/HHV4) are distantly related gammaherpesviruses causing tumors in humans. KSHV latency-associated nuclear antigen 1 (LANA1) is functionally similar to the EBV nuclear antigen-1 (EBNA1) protein expressed during viral latency, although they have no amino acid similarities. EBNA1 escapes cytotoxic lymphocyte (CTL) antigen processing by inhibiting its own proteosomal degradation and retarding its own synthesis to reduce defective ribosomal product processing. We show here that the LANA1 QED-rich central repeat (CR) region, particularly the CR2CR3 subdomain, also retards LANA1 synthesis and markedly enhances LANA1 stability in vitro and in vivo. LANA1 isoforms have half-lives greater than 24 h, and fusion of the LANA1 CR2CR3 domain to a destabilized heterologous protein markedly decreases protein turnover. Unlike EBNA1, the LANA1 CR2CR3 subdomain retards translation regardless of whether it is fused to the 5′ or 3′ end of a heterologous gene construct. Manipulation of sequence order, orientation, and composition of the CR2 and CR3 subdomains suggests that specific peptide sequences rather than RNA structures are responsible for synthesis retardation. Although mechanistic differences exist between LANA1 and EBNA1, the primary structures of both proteins have evolved to minimize provoking CTL immune responses. Simple strategies to eliminate these viral inhibitory regions may markedly improve vaccine effectiveness by maximizing CTL responses. Copyright © 2007, American Society for Microbiology. All Rights Reserved.
Early endosome antigen 1 (EEA1) decreases in macrophages infected with Paracoccidioides brasiliensis
Resumo:
Paracoccidioidomycosis (PCM) is a chronic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis, endemic in Latin America. P. brasiliensis has been observed in epithelial cells in vivo and in vitro, as well as within the macrophages. The identification of the mechanism by which it survives within the host cell is fertile ground for the discovery of its pathogenesis since this organism has the ability to induce its own endocytosis in epithelial cells and most likely in macrophages. The study of the expression of endocytic proteins pathway and co-localization of microorganisms enable detection of the mechanism by which microorganisms survive within the host cell. The aim of this study was to evaluate the expression of the endocytic protein EEA1 (early endosome antigen 1) in macrophages infected with P. brasiliensis. For detection of EEA1, three different techniques were employed: immunofluorescence, real-time polymerase chain reaction (PCR) and immunoblotting. In the present study, decreased expression of EEA1 as well as the rearrangement of the actin was observed when the fungus was internalized, confirming that the input mechanism of the fungus in macrophages occurs through phagocytosis. © 2013 ISHAM.
Resumo:
In previous immuno-epidemiological studies of the naturally acquired antibody responses to merozoite surface protein-1 (MSP-1) of Plasmodium vivax, we had evidence that the responses to distinct erythrocytic stage antigens could be differentially regulated. The present study was designed to compare the antibody response to three asexual erythrocytic stage antigens vaccine candidates of P. vivax. Recombinant proteins representing the 19 kDa C-terminal region of MSP-1(PvMSP19), apical membrane antigen n-1 ectodomain (PvAMA-1), and the region II of duffy binding protein (PvDBP-RII) were compared in their ability to bind to IgG antibodies of serum samples collected from 220 individuals from the state of Pará, in the North of Brazil. During patent infection with P. vivax, the frequency of individuals with IgG antibodies to PvMSP119, PvAMA-1, and PvDBP-RII were 95, 72.7, and 44.5% respectively. Although the frequency of responders to PvDBP-RII was lower, this frequency increased in individuals following multiple malarial infections. Individually, the specific antibody levels did not decline significantly nine months after treatment, except to PvMSP119. Our results further confirm a complex regulation of the immune response to distinct blood stage antigens. The reason for that is presently unknown but it may contribute to the high risk of re-infection in individuals living in the endemic areas.
Resumo:
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.
Resumo:
Since the immunochemical identification of the bullous pemphigoid antigen 230 (BP230) as one of the major target autoantigens of bullous pemphigoid (BP) in 1981, our understanding of this protein has significantly increased. Cloning of its gene, development and characterization of animal models with engineered gene mutations or spontaneous mouse mutations have revealed an unexpected complexity of the gene encoding BP230. The latter, now called dystonin (DST), is composed of at least 100 exons and gives rise to three major isoforms, an epithelial, a neuronal and a muscular isoform, named BPAG1e (corresponding to the original BP230), BPAG1a and BPAG1b, respectively. The various BPAG1 isoforms play a key role in fundamental processes, such as cell adhesion, cytoskeleton organization, and cell migration. Genetic defects of BPAG1 isoforms are the culprits of epidermolysis bullosa and complex, devastating neurological diseases. In this review, we summarize recent advances of our knowledge about several BPAG1 isoforms, their role in various biological processes and in human diseases.