945 resultados para Antigens, Helminth
Resumo:
Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II-restricted interferon gamma-producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.
Resumo:
A number of different interferon-gamma ELISpot protocols are in use in laboratories studying antigen-specific immune responses. It is therefore unclear how results from different assays compare, and what factors most significantly influence assay outcome. One such difference is that some laboratories use a short in vitro stimulation period of cells before they are transferred to the ELISpot plate; this is commonly done in the case of frozen cells, in order to enhance assay sensitivity. Other differences that may be significant include antibody coating of plates, the use of media with or without serum, the serum source and the number of cells added to the wells. The aim of this paper was to identify which components of the different ELISpot protocols influenced assay sensitivity and inter-laboratory variation. Four laboratories provided protocols for quantifying numbers of interferon-gamma spot forming cells in human peripheral blood mononuclear cells stimulated with Mycobacterium tuberculosis derived antigens. The differences in the protocols were compared directly. We found that several sources of variation in assay protocols can be eliminated, for example by avoiding serum supplementation and using AIM-V serum free medium. In addition, the number of cells added to ELISpot wells should also be standardised. Importantly, delays in peripheral blood mononuclear cell processing before stimulation had a marked effect on the number of detectable spot forming cells; processing delay thus should be minimised as well as standardised. Finally, a pre-stimulation culture period improved the sensitivity of the assay, however this effect may be both antigen and donor dependent. In conclusion, small differences in ELISpot protocols in routine use can affect the results obtained and care should be given to conditions selected for use in a given study. A pre-stimulation step may improve the sensitivity of the assay, particularly when cells have been previously frozen.
Resumo:
Case Reports
Resumo:
Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.
Resumo:
BACKGROUND: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. METHODOLOGY/PRINCIPAL FINDINGS: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. CONCLUSIONS/SIGNIFICANCE: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.
Resumo:
UNLABELLED: In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8(+)and CD4(+)T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE: Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
RATIONALE: Tuberculosis (TB) remains a leading cause of death, and the role of T-cell responses to control Mycobacterium tuberculosis infections is well recognized. Patients with latent TB infection develop strong IFN-gamma responses to the protective antigen heparin-binding hemagglutinin (HBHA), whereas patients with active TB do not. OBJECTIVES: We investigated the mechanism of this difference and evaluated the possible involvement of regulatory T (Treg) cells and/or cytokines in the low HBHA T-cell responses of patients with active TB. METHODS: The impact of anti-transforming growth factor (TGF)-beta and anti-IL-10 antibodies and of Treg cell depletion on the HBHA-induced IFN-gamma secretion was analyzed, and the Treg cell phenotype was characterized by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Although the addition of anti-TGF-beta or anti-IL-10 antibodies had no effect on the HBHA-induced IFN-gamma secretion in patients with active TB, depletion of CD4(+)CD25(high)FOXP3(+) T lymphocytes resulted in the induction by HBHA of IFN-gamma concentrations that reached levels similar to those obtained for latent TB infection. No effect was noted on the early-secreted antigen target-6 or candidin T-cell responses. CONCLUSIONS: Specific CD4(+)CD25(high)FOXP3(+) T cells depress the T-cell-mediated immune responses to the protective mycobacterial antigen HBHA during active TB in humans.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Few studies have analysed the antibody response during intravesical BCG immunotherapy for superficial bladder cancer. We have examined the evolution in serum antibody response against several heat shock proteins (hsp), including the recombinant mycobacterial hsp65 and the native protein P64 from BCG, GroEL from Escherichia coli (hsp60 family), recombinant mycobacterial hsp70 and the E. coli DnaK (hsp70 family), against purified protein derivative of tuberculin (PPD) and the AG85 complex of Mycobacterium bovis BCG, as well as against tetanus toxoid in 42 patients with a superficial bladder tumour, 28 treated with six intravesical BCG instillations and 14 patients used as controls. We also analysed the lymphoproliferative response of peripheral blood mononuclear cells against PPD in this population. Data of antibody responses at 6 weeks post BCG were available in all 28 patients, and at 4 month follow up in 17 patients. All patients who demonstrated a significant increase in IgC antibodies against PPD at 4 months follow up had a significant increase already at 6 weeks of follow up. In contrast, IgG antibodies against hsp increased significantly from 6 weeks to 4 months post- treatment. A significant increase in IgG antibodies against PPD, hsp65, P64, GroEL, and hsp70 at 4 months follow up was observed in 10/17, 8/17, 10/17, 4/17 and 8/17 patients. Native P64 protein elicited a higher antibody response than recombinant mycobacterial hsp65. No increase in antibody response was observed against Dnak from E. coli, against AG85 or tetanus toxoid after BCG therapy. An increase in IgG antibodies against P64 at 4 months follow up compared with pretreatment values was found to be a significant predictor of tumour recurrence (P < 0.01). Further studies with a larger number of patients are needed to confirm the value of the antibody response against P64 as a clinical independent prognostic factor.
Resumo:
Peptide microarrays are useful tools for characterizing the humoral response against methylated antigens. They are usually prepared by printing unmodified and methylated peptides on substrates such as functionalized microscope glass slides. The preferential capture of antibodies by methylated peptides suggests the specific recognition of methylated epitopes. However, unmodified peptide epitopes can be masked due to their interaction with the substrate. The accessibility of unmodified peptides and thus the specificity of the recognition of methylated peptide epitopes can be probed using the in situ methylation procedure described here. Alternately, the in situ methylation of peptide microarrays allows probing the presence of antibodies directed toward methylated epitopes starting from easy-to-make and cost-effective unmodified peptide libraries. In situ methylation was performed using formaldehyde in the presence of sodium cyanoborohydride and nickel chloride. This chemical procedure converts lysine residues into mono- or dimethyl lysines.