803 resultados para Antigenic
Resumo:
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.
Resumo:
"Mal de Cadeiras", an enzootic disease caused by Trypanosoma evansi, is one of the most important trypanosomiases in the Brazilian Pantanal region. The disease affects mainly horses, which are widely used in extensive cattle production, an activity of greatest economical significance for the region. The parasite also infects sylvan (coatis and capybaras) and domestic (dogs) animals, respectively considered wild and domestic reservoirs of T. evansi. For a better understanding of the interaction of T. evansi with its rodent host, we evaluated the differences in the specific antibody level patterns and in the parasitic peptides recognition patterns of experimentally infected Wistar rats. The rats experimentally infected with T. evansi isolates obtained from coatis, dogs and horses were submitted to indirect immunofluorescence test (IgM e IgG) and Western blotting. The serological titers for IgM and IgG ranged between 1:40 and 1:160. The most recognized polypeptide profiles were in a range of 17 and 74 kDa. Our data suggest that the humoral immune response in Wistar rats is not sufficient for granting an effective control of T. evansi infections.
Resumo:
The Mojuí dos Campos virus (MDCV) was isolated from the blood of an unidentified bat (Chiroptera) captured in Mojuí dos Campos, Santarém, State of Pará, Brazil, in 1975 and considerated to be antigenically different from other 102 arboviruses belonging to several antigenic groups isolated in the Amazon region or another region by complement fixation tests. The objective of this work was to develop a morphologic, an antigenic and physicochemical characterization of this virus. MDCV produces cytopathic effect in Vero cells, 24 h post-infection (p.i), and the degree of cellular destruction increases after a few hours. Negative staining electron microscopy of the supernatant of Vero cell cultures showed the presence of coated viral particles with a diameter of around 98 nm. Ultrathin sections of Vero cells, and brain and liver of newborn mice infected with MDCV showed an assembly of the viral particles into the Golgi vesicles. The synthesis kinetics of the proteins for MDCV were similar to that observed for other bunyaviruses, and viral proteins could be detected as early as 6 h p.i. Our results reinforce the original studies which had classified MDCV in the family Bunyaviridae, genus Bunyavirus as an ungrouped virus, and it may represent the prototype of a new serogroup.
Resumo:
We have previously confirmed the presence of common antigens between Schistosoma mansoni and its vector, Biomphalaria glabrata. Cross-reactive antigens may be important as possible candidates for vaccine and diagnosis of schistosomiasis. Sera from outbred mice immunized with a soluble Biomphalaria glabrata antigen (SBgA) of non-infected B. glabrata snails recognized molecules of SBgA itself and S. mansoni AWA by Western blot. Recognition of several molecules of the SBgA were inhibited by pre-incubation with AWA (16, 30, 36, 60 and 155 kDa). The only specific molecule of AWA, inhibited by SBgA, was a 120 kDa protein. In order to determine which epitopes of SBgA were glycoproteins, the antigen was treated with sodium metaperiodate and compared with non-treated antigen. Molecules of 140, 60 and 24 kDa in the SBgA appear to be glycoproteins. Possible protective effects of the SBgA were evaluated immunizing outbred mice in two different experiments using Freund's Adjuvant. In the first one (12 mice/group), we obtained a significant level of protection (46%) in the total worm load, with a high variability in worm recovery. In the second experiment (22 mice/group), no significant protection was observed, neither in worm load nor in egg production per female. Our results suggest that SBgA constitutes a rich source of candidate antigens for diagnosis and prophylactic studies.
Resumo:
Antigenic characterization of Anaplasma marginale isolates, by identifying conserved and variable epitopes of major surface proteins (MSP), is an important tool for vaccine development against this rickettsia. The B cell epitopes of A. marginale isolates from three microregions of the State of Pernambuco and one from the State of Mato Grosso do Sul, Brazil, were characterized by indirect fluorescent antibody technique (IFAT) and Western blot (WB) with 15 monoclonal antibodies (MAbs). The epitope recognized by MAb ANA22B1 (MSP-1a) was conserved by IFAT and WB (73-81 kDa). MSP-2 epitopes recognized by MAbs ANAO58A2 and ANAO70A2 were conserved by IFAT, while ANAO50A2 and ANA66A2 epitopes were polymorphic; in the WB, the MAbs ANAO50A2 and ANAO70A2 identified bands of 45 kDa only in the Pernambuco-Mata isolate. None of the isolates reacted with MAb ANAR75C2 (MSP-3). The MSP-4 epitope recognized by MAb ANAR76A1 was conserved by IFAT, as well as the MSP-5 epitope recognized by MAb ANAF16C1 by IFAT and WB (16 kDa). The MAbs ANAR17A6, ANAR83B3, ANAR94C1, ANAO24D5 and ANAR19A6 identified conserved epitopes by IFAT. MSP-1, MSP-2 and MSP-4, which previously showed partial protection in experimental trials, are also potential immunogens to be employed in Brazil, due to the B cell epitope conservation.
Resumo:
Acute respiratory infections (ARI) caused by respiratory syncytial virus (RSV) were studied in 482 children from Salvador, BA, Brazil, over a period of 12 months. The epidemic period of RSV infections in Salvador occurred from February (summer) to August (winter), with peaks in May, June, and July. The grouping characteristics of 84 RSV present in nasopharyngeal secretions of children seen at a reference university hospital were analyzed. RSV represented 17.4% of all cases and 54.5% of the positive samples. Sixty-four RSV strains were assigned to group A and 14 to group B. Both groups circulated in the five months of the epidemic period studied. Infections by both groups of RSV were more frequent in children up to one year of age. The incidence of RSV ARI was slightly more frequent in males, although group B had more infected females.
Resumo:
IgE antibody response in human strongyloidiasis was evaluated by enzyme-linked immunosorbent assay (ELISA) and immunoblotting (IB) using Strongyloides ratti saline extract as heterologous antigen. A total of 50 serum samples of patients who were shedding S. stercoralis larvae in feces (group I, copropositive), 38 of patients with other intestinal parasites (group II), and 38 of subjects with negative results in three parasitologic assays (group III, copronegative) were analyzed. Levels of IgE anti-Strongyloides expressed in ELISA Index (EI) were significantly higher in patients of group I (1.32) than in group II (0.51) and group III (0.81), with positivity rates of 54%, 0%, and 10.5%, respectively. Fifteen S. ratti antigenic components were recognized in IB-IgE by sera of group I, with frequency ranging from 8% to 46%. In group II, only two antigenic bands (101, 81 kDa) were detected in a frequency of 10% and no reactivity was found in group III. Sera with EI values > 1.5 recognized five from 13 specific antigenic bands (70, 63, 61, 44, 7 kDa). It can be concluded that these five antigenic components recognized by IB-IgE using S. ratti antigen might be employed as an additional tool for improving the immunodiagnosis in human strongyloidiasis.
Resumo:
A Neospora caninum 17 kDa protein fraction (p17) has been described as an immunodominant antigen (IDA) under reducing and non-reducing conditions. The aim of the present study was to investigate the diagnostic utility of p17 in cattle. In order to achieve this, p17 was purified by electroelution from whole N. caninum tachyzoite soluble extract and a p17-based Western blot (WB-p17) was developed. The p17 recognition was measured by densitometry and expressed as OD values to check the validity of the WB-p17. A total of 131 sera including sequential samples from naturally- and experimentally-infected calves and breeding cattle were analysed by WB-p17 and compared with IFAT using whole formalin-fixed tachyzoites as a reference test. The results obtained highlight the feasibility of using the N. caninum p17 in a diagnostic test in cattle. Firstly, the assay based on the p-17 antigen discriminated between known positive and negative sera from different cattle populations, breeding cattle and calves. Secondly, the p17 antigen detected fluctuations in the antibody levels and seroconversion in naturally- and experimentally-infected cattle. Significant differences in p-17 antigen recognition were observed between naturally infected aborting and non-aborting cattle, as well as significant antibody fluctuations over time in experimentally infected cattle, which varied between groups. Furthermore, the results obtained with WB-p17 are in accordance with the results obtained with the IFAT, as high agreement values were obtained when all bovine subpopulations were included (kappa = 0.86).
Resumo:
From January to December 1998, nasopharyngeal aspirates were obtained from 482 children with acute respiratory infections attended in emergence department and wards of a teaching hospital in the city of Salvador, Brazil. The samples were tested for the presence of adenovirus by isolation in tissue culture and indirect immunofluorescence assay. Eleven adenoviruses were detected by both methods in the same clinical samples. Infections by adenovirus were observed during seven months of the year without association with rainy season. Genome analysis was performed on these 11 isolates. Species C was represented by serotypes 1, 2 and 5. Within species B, only serotype 7 (Ad7) was detected. Two genomic variants of Ad1, two variants of Ad2, one of Ad5, and one of Ad7 (7h) were identified. This is the first study of molecular epidemiology of adenovirus associated to acute respiratory infections in children living in Northeast Brazil, and contributes to a better understanding of adenovirus infections in the country.
Resumo:
Several studies conducted all over the world have reported that the influenza virus is associated with great morbidity and mortality rates. In this study, we analyzed the incidence of the influenza virus between 2000 and 2003 in Curitiba. We studied 1621 samples obtained from outpatients and hospitalized patients of both sexes and all ages. The study was conducted at the local primary care health units (outpatients) and at the tertiary care unit (hospitalized) of the General Hospital of the Federal University in the state of Paraná, Brazil. Nasopharyngeal aspirates and, eventually, bronchoalveolar lavage were assayed for the presence of viral antigens, either by indirect immunofluorescence or cell culture. Of the samples studied, 135 (8.3%) were positive for influenza virus, and of those, 103 (76.3%) were positive for type A and 32 (23.7%) for type B. Additionally, positive samples were analyzed by reverse transcription followed by polymerase chain reaction and subtypes H1 and H3 were identified from this group. A high incidence of positive samples was observed mainly in the months with lower temperatures. Furthermore, outpatients showed a higher incidence of influenza viruses than hospitalized patients.
Resumo:
Babesia bovis is a tick-borne pathogen that remains an important constraint for the development of cattle industries in tropical and subtropical regions of the world. Effective control can be achieved by vaccination with live attenuated phenotypes of the parasite. However, these phenotypes have a number of drawbacks, which justifies the search for new, more efficient immunogens based mainly on recombinant protein technology. In the present paper, ribosomal phosphoprotein P0 from a Brazilian isolate of B. bovis was produced and evaluated with regard to conservation and antigenicity. The protein sequence displayed high conservation between different Brazilian isolates of B. bovis and several Apicomplexa parasites such as Theileria, Neospora and Toxoplasma. IgG from cattle experimentally and naturally infected with B. bovisas well as IgG1 and IgG2 from naturally infected cattle reacted with the recombinant protein. IgG from cattle experimentally infected with Babesia bigemina cross-reacted with B. bovis recombinant P0. These characteristics suggest that P0 is a potential antigen for recombinant vaccine preparations against bovine babesiosis.
Resumo:
Cells from two melanoma cell lines, Me43 and GLL-19, were cloned in methylcellulose cultures and 20 randomly selected colonies from each line were picked up by micromanipulation, expanded in liquid cultures, and considered as clones of the original cell lines. The antigenic cell surface phenotype of these clones defined by panel of 12 monoclonal antibodies (MAb) was analyzed by flow microfluorometry (FMF) using a fluorescence-activated cell sorter (FACS II) and compared with the known stable phenotype of the parent cell line. The antibody panel consisted of eight MAb against melanoma-associated antigens, two MAb against monomorphic determinants of HLA-DR (la) and HLA-ABC, respectively, one MAb against the common acute lymphoblastic leukemia antigen (CALLA) and one MAb against carcinoembryonic antigen used as control. A remarkable heterogeneity in terms of qualitative and quantitative expression of the cell surface antigens studied was observed among and within the different clones. The single-cell origin of the clones was assessed by comparing the clonogenic cell frequency, determined by limiting dilutions in microculture plates, with the cloning efficiency observed in Petri dishes. Both techniques using methylcellulose medium gave the same percentages of growing colonies. Cells from four Me43 clones were recloned in methylcellulose and the phenotype of five randomly selected subclones from each clone was analysed using the same panel of monoclonal antibodies. Each subclone also displayed heterogeneity with individual phenotypes different from that of the original clone and from the parental Me43 cell line. The antigen expression by individual cells in situ within clones was analyzed on frozen sections from colonies using the same panel of MAb and a biotin-avidin immunoperoxidase method. The results confirmed the marked heterogeneity of antigen expression within and among colonies, as indicated by the FMF analysis.
Resumo:
This study evaluated two vaccine candidates for their effectiveness in protecting BALB/c mice against Leishmania chagasiinfection. These immunogenic preparations were composed of Leishmania amazonensisor Leishmania braziliensisantigenic extracts in association with saponin adjuvant. Mice were given three subcutaneous doses of one of these vaccine candidates weekly for three weeks and four weeks later challenged with promastigotes of L. chagasiby intravenous injection. We observed that both vaccine candidates induced a significant reduction in the parasite load of the liver, while the L. amazonensisantigenic extract also stimulated a reduction in spleen parasite load. This protection was associated with a suppression of both interleukin (IL)-10 and IL-4 cytokines by spleen cells in response to L. chagasiantigen. No change was detected in the production of IFN-γ. Our data show that these immunogenic preparations reduce the type 2 immune response leading to the control of parasite replication.
Resumo:
Carcinoembryonic antigen (CEA) is a well-known tumor marker, consisting of a single heavily glycosylated polypeptide chain (mol. wt 200 kD), bound to the cell surface by a phosphatidylinositol-glycan anchor. The hydrophobic domain, encoded by the 3' end of the open reading frame of the CEA gene is not present in the mature protein. This domain is assumed to play an important role in the targeting and attachment of CEA to the cell surface. To verify this hypothesis, a recombinant CEA cDNA lacking the 78 b.p. of the 3' region, encoding the 26 a.a. hydrophobic domain, was prepared in a Rc/CMV expression vector containing a neomycin resistance gene. The construct was transfected by the calcium phosphate technique into CEA-negative human and rat colon carcinoma cell lines. Geneticin-resistant transfectants were screened for the presence of CEA in the supernatant and positive clones were isolated. As determined by ELISA, up to 13 micrograms of recombinant CEA per 10(6) cells was secreted within 72 hr by the human transfected cells and about 1 microgram by the rat cells. For comparison, two human carcinoma cell lines, CO112 and LS174T, selected for high CEA expression, shed about 45 and 128 ng per 10(6) cells within 72 hr, respectively. Western blot analysis showed that the size of the recombinant CEA secreted by the transfected human cells is identical to that of reference CEA purified from human colon carcinomas metastases (about 200 kD). The recombinant CEA synthesized by the transfected rat carcinoma cells has a smaller size (about 144 kD, possibly due to incomplete glycosylation), as has already been observed for CEA produced by rat colon carcinoma cells transfected with full-length CEA cDNA. The 100-fold increase in secretion of rCEA encoded by truncated CEA cDNA transfected in human cells confirms the essential role of this domain in the targeting and anchoring of the glycoprotein. These results suggest a new approach for the in vitro production of large amounts of CEA needed in research laboratories and for immunoassay kits.
Resumo:
BACKGROUND Obeche wood dust is a known cause of occupational asthma where an IgE-mediated mechanism has been demonstrated. OBJECTIVE To characterize the allergenic profile of obeche wood dust and evaluate the reactivity of the proteins by in vitro, ex vivo and in vivo assays in carpenters with confirmed rhinitis and/or asthma MATERIALS AND METHODS An in-house obeche extract was obtained, and two IgE binding bands were purified (24 and 12 kDa) and sequenced by N-terminal identity. Specific IgE and IgG, basophil activation tests and skin prick tests (SPTs) were performed with whole extract and purified proteins. CCD binding was analyzed by ELISA inhibition studies. RESULTS Sixty-two subjects participated: 12 with confirmed occupational asthma/rhinitis (ORA+), 40 asymptomatic exposed (ORA-), and 10 controls. Of the confirmed subjects, 83% had a positive SPT to obeche. There was a 100% recognition by ELISA in symptomatic subjects vs. 30% and 10% in asymptomatic exposed subjects and controls respectively (p<0.05). Two new proteins were purified, a 24 kDa protein identified as a putative thaumatin-like protein and a 12 kDa gamma-expansin. Both showed allergenic activity in vitro, with the putative thaumatin being the most active, with 92% recognition by ELISA and 100% by basophil activation test in ORA+ subjects. Cross-reactivity due to CCD was ruled out in 82% of cases. CONCLUSIONS Two proteins of obeche wood were identified and were recognized by a high percentage of symptomatic subjects and by a small proportion of asymptomatic exposed subjects. Further studies are required to evaluate cross reactivity with other plant allergens.