72 resultados para Antibiòtics
Resumo:
The aim of this study was to identity metabolites and transformation products (TPs) in chicken muscle from amoxicillin (AMX), cephapirin (PIR) and ceftiofur (TIO), which are antibiotics of the β-lactam family. Liquid chromatography coupled to quadrupole time-of-flight (QqTOF) mass spectrometry was utilized due to its high resolution, high mass accuracy and MS/MS capacity for elemental composition determination and structural elucidation. Amoxicilloic acid (AMA) and amoxicillin diketopiperazine (DKP) were found as transformation products from AMX. Desacetylcephapirin (DAC) was detected as a metabolite of PIR. Desfuroylceftiofur (DFC) and its conjugated compound with cysteine (DFC-S-Cys) were detected as a result of TIO in contact with chicken muscle tissue. The metabolites and transformation products were also monitored during the in vivo AMX treatment and slaughtering period. It was found that two days were enough to eliminate AMX and associated metabolites/transformation products after the end of administration.
Resumo:
(S)-2-(4-Bromo-2,4"-bithiazole)-1-(tert-butoxycarbonyl)pyrrolidine ((S)-1) was obtained as a single enantiomer and in high yield by means of a two-step modified Hantzsch thiazole synthesis reaction when bromoketone 3 and thioamide (S)-4 were used. Further conversion of (S)-1 into trimethyltin derivative (S)-2 broadens the scope for further cross-coupling reactions.
Resumo:
Thiopeptides, or thiazolyl peptides, are a relatively new family of antibiotics that already counts with more than one hundred different entities. Although they are mainly isolated from soil bacteria, during the last decade, new members have been isolated from marine samples. Far from being limited to their innate antibacterial activity, thiopeptides have been found to possess a wide range of biological properties, including anticancer, antiplasmodial, immunosuppressive, etc. In spite of their ribosomal origin, these highly posttranslationally processed peptides have posed a fascinating synthetic challenge, prompting the development of various methodologies and strategies. Regardless of their limited solubility, intensive investigations are bringing thiopeptide derivatives closer to the clinic, where they are likely to show their veritable therapeutic potential.
Resumo:
In recent years, the emergence of Staphylococcus aureus strains with reduced susceptibility to glycopeptides has raised considerable concern. We studied the efficacy of vancomycin and teicoplanin, as well as cloxacillin and cefotaxime, against the infection caused by four S. aureus strains with different glycopeptide and β-lactam susceptibilities (strains A, B, C, and D; MICs for vancomycin of 1, 2, 4, and 8 µg/ml respectively), using a modified model of mouse peritonitis. This optimized model appeared to be straightforward and reproducible, and was able to detect low differences in bacterial killing between antibiotics and also between different S. aureus strains. Bactericidal activities in peritoneal fluid for vancomycin, teicoplanin, cloxacillin, and cefotaxime decreased from -2.98, -2.36, -3.22, and -3.57 log10 cfu/ml, respectively, in infection by strain A (MICs for vancomycin and cloxacillin of 1 and 0.38 µg/ml, respectively) to -1.22, -0.65, -1.04, and +0.24 in peritonitis due to strain D (MICs for vancomycin and cloxacillin of 8 and 1,024 µg/ml). Our data confirm the superiority of β-lactams against methicillin-susceptible S. aureus and show that bactericidal activity of glycopeptides decreases significantly with slight increases in MICs; this finding suggests a reduced efficacy of glycopeptides in the treatment of serious glycopeptide-intermediate S. aureus infections
Resumo:
In recent years, the emergence of Staphylococcus aureus strains with reduced susceptibility to glycopeptides has raised considerable concern. We studied the efficacy of vancomycin and teicoplanin, as well as cloxacillin and cefotaxime, against the infection caused by four S. aureus strains with different glycopeptide and β-lactam susceptibilities (strains A, B, C, and D; MICs for vancomycin of 1, 2, 4, and 8 µg/ml respectively), using a modified model of mouse peritonitis. This optimized model appeared to be straightforward and reproducible, and was able to detect low differences in bacterial killing between antibiotics and also between different S. aureus strains. Bactericidal activities in peritoneal fluid for vancomycin, teicoplanin, cloxacillin, and cefotaxime decreased from -2.98, -2.36, -3.22, and -3.57 log10 cfu/ml, respectively, in infection by strain A (MICs for vancomycin and cloxacillin of 1 and 0.38 µg/ml, respectively) to -1.22, -0.65, -1.04, and +0.24 in peritonitis due to strain D (MICs for vancomycin and cloxacillin of 8 and 1,024 µg/ml). Our data confirm the superiority of β-lactams against methicillin-susceptible S. aureus and show that bactericidal activity of glycopeptides decreases significantly with slight increases in MICs; this finding suggests a reduced efficacy of glycopeptides in the treatment of serious glycopeptide-intermediate S. aureus infections
Resumo:
Fundamentos: el objetivo de este estudio fue comparar la eficacia. seguridad y tolerancia de la azitromicina frente a amoxicilina/ac. clavulánico en el tratamiento de pacientes con infecciones bucales agudas de origen odontogénico. Pacientes y Método: en este estudio abierto, comparativo y multicéntrico, se incluyeron 208 pacientes con infección bucal aguda de origen odontogénico, asignados aleatoriamente a dos grupos; 102 pacientes recibieron azitromicina, y 106 pacientes recibieron amoxicilina/ac. clavulánico. Se realizaron una historia clínica y una exploración física, y se tomaron muestras de sangre y orina. En cada una de las visitas, se recogieron los signos y síntomas característicos de la infección. Resultados: el nivel de respuesta fue similar en ambos grupos terapéuticos, obteniéndose un porcentaje de curación o mejoría superior al 90%. Azitromicina fue mejor tolerada y tuvo mejor cumplimiento que amoxicilina/ac. clavulánico. Los efectos adversos fueron en su mayoría gastrointestinales. Conclusión: Azitromicina y amoxicilina/clavulánico fueron igualmente efectivos en el tratamiento de infecciones agudas de origen odontogénico.
Resumo:
Aim: To identify prophylactic antibiotic prescription practices among Spanish dentists with preferential dedication to Oral Surgery in different types of tooth extraction surgeries. Method: Members of the Spanish Oral Surgery Society were surveyed on antibiotic prophylaxis use in 4 different tooth extraction modalities scaled according to their surgical invasiveness. Results: Sixty-nine of the 105 distributed questionnaires were returned completed. Thirteen percent of the surveyed surgeons would prescribe antibiotics to prevent postoperative wound infection when confronted with conventional tooth extraction lasting less than 5 minutes. In the case of surgery lasting more than 5 minutes, the percentage of participants that would prescribe antibiotics increased to 39%. When a mucoperiosteal flap was elevated or an ostectomy was performed, 87% and 100%, respectively, would prescribe antibiotic prophylaxis. Amoxicillin and its combination with clavulanic acid were the most commonly prescribed antibiotics. All participants would prescribe the antibiotic orally, starting after surgery and with a duration that ranged from 2-8 days. Conclusions: The results obtained suggest that antibiotic prophylaxis for preventing local odontogenic infection is not being correctly implemented in Spain. This can generate new bacterial resistances, facilitate adverse drug reactions and favor opportunistic infections. Better designed studies are needed in order to clarify the role of antibiotics in the prevention of postsurgical wound infection
Resumo:
The present work describes the development of a fast and robust analytical method for the determination of 53 antibiotic residues, covering various chemical groups and some of their metabolites, in environmental matrices that are considered important sources of antibiotic pollution, namely hospital and urban wastewaters, as well as in river waters. The method is based on automated off-line solid phase extraction (SPE) followed by ultra-high-performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry (UHPLC–QqLIT). For unequivocal identification and confirmation, and in order to fulfill EU guidelines, two selected reaction monitoring (SRM) transitions per compound are monitored (the most intense one is used for quantification and the second one for confirmation). Quantification of target antibiotics is performed by the internal standard approach, using one isotopically labeled compound for each chemical group, in order to correct matrix effects. The main advantages of the method are automation and speed-up of sample preparation, by the reduction of extraction volumes for all matrices, the fast separation of a wide spectrum of antibiotics by using ultra-high-performance liquid chromatography, its sensitivity (limits of detection in the low ng/L range) and selectivity (due to the use of tandem mass spectrometry) The inclusion of β-lactam antibiotics (penicillins and cephalosporins), which are compounds difficult to analyze in multi-residue methods due to their instability in water matrices, and some antibiotics metabolites are other important benefits of the method developed. As part of the validation procedure, the method developed was applied to the analysis of antibiotics residues in hospital, urban influent and effluent wastewaters as well as in river water samples
Resumo:
This work describes the formation of transformation products (TPs) by the enzymatic degradation at laboratory scale of two highly consumed antibiotics: tetracycline (Tc) and erythromycin (ERY). The analysis of the samples was carried out by a fast and simple method based on the novel configuration of the on-line turbulent flow system coupled to a hybrid linear ion trap – high resolution mass spectrometer. The method was optimized and validated for the complete analysis of ERY, Tc and their transformation products within 10 min without any other sample manipulation. Furthermore, the applicability of the on-line procedure was evaluated for 25 additional antibiotics, covering a wide range of chemical classes in different environmental waters with satisfactory quality parameters. Degradation rates obtained for Tc by laccase enzyme and ERY by EreB esterase enzyme without the presence of mediators were ∼78% and ∼50%, respectively. Concerning the identification of TPs, three suspected compounds for Tc and five of ERY have been proposed. In the case of Tc, the tentative molecular formulas with errors mass within 2 ppm have been based on the hypothesis of dehydroxylation, (bi)demethylation and oxidation of the rings A and C as major reactions. In contrast, the major TP detected for ERY has been identified as the “dehydration ERY-A”, with the same molecular formula of its parent compound. In addition, the evaluation of the antibiotic activity of the samples along the enzymatic treatments showed a decrease around 100% in both cases
Resumo:
Objetivos: Identificar la flora bacteriana y su susceptibilidad a varios antibióticos utilizados en infecciones odontogénicas de localización periapical y en las pericoronaritis del tercer molar inferior, para poder adaptar convenientemente el tratamiento antibiótico a las exigencias de tales infecciones, y evitar así los efectos secundarios y los sobretratamientos con antibióticos. Material y métodos: Se han seleccionado con unos criterios de inclusión y de exclusión a 64 pacientes que presentaban una infección odontogénica. Se recogieron muestras de las lesiones en condiciones de máxima asepsia, evitando la contaminación por flora saprófita bucal. Las muestras se sembraron en medios de cultivo apropiados y se incubaron en condiciones aeróbicas y anaeróbicas; finalmente se procedió a la identificación de los microorganismos aislados y a la determinación de su susceptibilidad antibiótica, los resultados se analizaron estadísticamente mediante la prueba t-Student (para muestras aparejadas y para una muestra). Resultados: Se aislaron un total de 184 cepas bacterianas, incluyendo cocos Gram positivo anaerobios facultativos (68%), bacilos Gram negativo anaerobios estrictos (30%), y bacilos Gram positivo anaerobios facultativos (2%). Independientemente del origen de la infección odontogénica los antibióticos que obtuvieron los mejores resultados en cuanto a mayor sensibilidad y menor resistencia estadísticamente significativos fueron respectivamente la amoxicilina/clavulánico y la amoxicilina (p<0,05). Discusión: Cada vez hay más estudios que indican el alto índice de resistencias a antibióticos en poblaciones bacterianas patógenas que producen infecciones en territorios no bucodentales. A pesar de ello, los niveles de resistencia a los antibióticos en las infecciones odontogénicas no han seguido la misma tendencia, aunque se ha detectado para ciertos antibióticos un alto índice de resistencia. En nuestro trabajo hemos encontrado que los antibióticos de uso común que han obtenido mayor sensibilidad y menor resistencia han sido la amoxicilina en combinación con ácido clavulánico seguido de la amoxicilina.
Resumo:
The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied.
Resumo:
Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations
Resumo:
The presence of residues of antibiotics, metabolites, and thermal transformation products (TPs), produced during thermal treatment to eliminate pathogenic microorganisms in milk, could represent a risk for people. Cow"s milk samples spiked with enrofloxacin (ENR), ciprofloxacin (CIP), difloxacin (DIF), and sarafloxacin (SAR) and milk samples from cows medicated with ENR were submitted to several thermal treatments. The milk samples were analyzed by liquid chromatography-mass spectrometry (LC-MS) to find and identify TPs and metabolites. In this work, 27 TPs of 4 quinolones and 24 metabolites of ENR were found. Some of these compounds had been reported previously, but others were characterized for the first time, including lactose-conjugated CIP, the formamidation reaction for CIP and SAR, and hydroxylation or ketone formation to produce three different isomers for all quinolones studied.
Resumo:
Antimicrobial peptides offer a new class of therapeutic agents to which bacteria may not be able todevelop genetic resistance, since their main activity is in the lipid component of the bacterial cell mem-brane. We have developed a series of synthetic cationic cyclic lipopeptides based on natural polymyxin,and in this work we explore the interaction of sp-85, an analog that contains a C12 fatty acid at theN-terminus and two residues of arginine. This analog has been selected from its broad spectrum antibac-terial activity in the micromolar range, and it has a disruptive action on the cytoplasmic membrane ofbacteria, as demonstrated by TEM. In order to obtain information on the interaction of this analog withmembrane lipids, we have obtained thermodynamic parameters from mixed monolayers prepared withPOPG and POPE/POPG (molar ratio 6:4), as models of Gram positive and Gram negative bacteria, respec-tively. LangmuirBlodgett films have been extracted on glass plates and observed by confocal microscopy,and images are consistent with a strong destabilizing effect on the membrane organization induced bysp-85. The effect of sp-85 on the membrane is confirmed with unilamelar lipid vesicles of the same com-position, where biophysical experiments based on fluorescence are indicative of membrane fusion andpermeabilization starting at very low concentrations of peptide and only if anionic lipids are present.Overall, results described here provide strong evidence that the mode of action of sp-85 is the alterationof the bacterial membrane permeability barrier.
Resumo:
The esterification of fragment C1-C8 (2) with fragment C16-C23 (3) to give iodo derivative 4, followed by a Pd-catalysed coupling with a C9-C15 fragment (7 or 8), may provide a common precursor of most palmerolides. Ligands and reaction conditions were exhaustively examined to perform the C15-C16 bond formation via Negishi reaction. With simple models, pre-activated Pd-Xantphos and Pd-DPEphos complexes were the most efficient catalysts at RT. Zincation of the C9-C15 fragment (8) and cross coupling with 4 required 3 equiv of t-BuLi, 10 mol % of Pd-Xantphos and 60 °C.