758 resultados para Ant-based algorithm


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paperin pinnan karheus on yksi paperin laatukriteereistä. Sitä mitataan fyysisestipaperin pintaa mittaavien laitteiden ja optisten laitteiden avulla. Mittaukset vaativat laboratorioolosuhteita, mutta nopeammille, suoraan linjalla tapahtuville mittauksilla olisi tarvetta paperiteollisuudessa. Paperin pinnan karheus voidaan ilmaista yhtenä näytteelle kohdistuvana karheusarvona. Tässä työssä näyte on jaettu merkitseviin alueisiin, ja jokaiselle alueelle on laskettu erillinen karheusarvo. Karheuden mittaukseen on käytetty useita menetelmiä. Yleisesti hyväksyttyä tilastollista menetelmää on käytetty tässä työssä etäisyysmuunnoksen lisäksi. Paperin pinnan karheudenmittauksessa on ollut tarvetta jakaa analysoitava näyte karheuden perusteella alueisiin. Aluejaon avulla voidaan rajata näytteestä selvästi karheampana esiintyvät alueet. Etäisyysmuunnos tuottaa alueita, joita on analysoitu. Näistä alueista on muodostettu yhtenäisiä alueita erilaisilla segmentointimenetelmillä. PNN -menetelmään (Pairwise Nearest Neighbor) ja naapurialueiden yhdistämiseen perustuvia algoritmeja on käytetty.Alueiden jakamiseen ja yhdistämiseen perustuvaa lähestymistapaa on myös tarkasteltu. Segmentoitujen kuvien validointi on yleensä tapahtunut ihmisen tarkastelemana. Tämän työn lähestymistapa on verrata yleisesti hyväksyttyä tilastollista menetelmää segmentoinnin tuloksiin. Korkea korrelaatio näiden tulosten välillä osoittaa onnistunutta segmentointia. Eri kokeiden tuloksia on verrattu keskenään hypoteesin testauksella. Työssä on analysoitu kahta näytesarjaa, joidenmittaukset on suoritettu OptiTopolla ja profilometrillä. Etäisyysmuunnoksen aloitusparametrit, joita muutettiin kokeiden aikana, olivat aloituspisteiden määrä ja sijainti. Samat parametrimuutokset tehtiin kaikille algoritmeille, joita käytettiin alueiden yhdistämiseen. Etäisyysmuunnoksen jälkeen korrelaatio oli voimakkaampaa profilometrillä mitatuille näytteille kuin OptiTopolla mitatuille näytteille. Segmentoiduilla OptiTopo -näytteillä korrelaatio parantui voimakkaammin kuin profilometrinäytteillä. PNN -menetelmän tuottamilla tuloksilla korrelaatio oli paras.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reinforcement Learning (RL) refers to a class of learning algorithms in which learning system learns which action to take in different situations by using a scalar evaluation received from the environment on performing an action. RL has been successfully applied to many multi stage decision making problem (MDP) where in each stage the learning systems decides which action has to be taken. Economic Dispatch (ED) problem is an important scheduling problem in power systems, which decides the amount of generation to be allocated to each generating unit so that the total cost of generation is minimized without violating system constraints. In this paper we formulate economic dispatch problem as a multi stage decision making problem. In this paper, we also develop RL based algorithm to solve the ED problem. The performance of our algorithm is compared with other recent methods. The main advantage of our method is it can learn the schedule for all possible demands simultaneously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a region-based algorithm for deriving a concise description of a first order optical flow field. The algorithm described achieves performance improvements over existing algorithms without compromising the accuracy of the flow field values calculated. These improvements are brought about by not computing the entire flow field between two consecutive images, but by considering only the flow vectors of a selected subset of the images. The algorithm is presented in the context of a project to balance a bipedal robot using visual information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a filter-based algorithm for feature selection. The filter is based on the partitioning of the set of features into clusters. The number of clusters, and consequently the cardinality of the subset of selected features, is automatically estimated from data. The computational complexity of the proposed algorithm is also investigated. A variant of this filter that considers feature-class correlations is also proposed for classification problems. Empirical results involving ten datasets illustrate the performance of the developed algorithm, which in general has obtained competitive results in terms of classification accuracy when compared to state of the art algorithms that find clusters of features. We show that, if computational efficiency is an important issue, then the proposed filter May be preferred over their counterparts, thus becoming eligible to join a pool of feature selection algorithms to be used in practice. As an additional contribution of this work, a theoretical framework is used to formally analyze some properties of feature selection methods that rely on finding clusters of features. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we present a new wavelet-based algorithm for low-cost computation of the cepstrum. It can be used for real time precise pitch determination in automatic speech and speaker recognition systems. Many wavelet families are examined to determine the one that works best. The results confirm the efficacy and accuracy of the proposed technique for pitch extraction. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work seeks to propose and evaluate a change to the Ant Colony Optimization based on the results of experiments performed on the problem of Selective Ride Robot (PRS, a new problem, also proposed in this paper. Four metaheuristics are implemented, GRASP, VNS and two versions of Ant Colony Optimization, and their results are analyzed by running the algorithms over 32 instances created during this work. The metaheuristics also have their results compared to an exact approach. The results show that the algorithm implemented using the GRASP metaheuristic show good results. The version of the multicolony ant colony algorithm, proposed and evaluated in this work, shows the best results

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we deal with the problem of feature selection by introducing a new approach based on Gravitational Search Algorithm (GSA). The proposed algorithm combines the optimization behavior of GSA together with the speed of Optimum-Path Forest (OPF) classifier in order to provide a fast and accurate framework for feature selection. Experiments on datasets obtained from a wide range of applications, such as vowel recognition, image classification and fraud detection in power distribution systems are conducted in order to asses the robustness of the proposed technique against Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and a Particle Swarm Optimization (PSO)-based algorithm for feature selection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, to solve the reconfiguration problem of radial distribution systems a scatter search, which is a metaheuristic-based algorithm, is proposed. In the codification process of this algorithm a structure called node-depth representation is used. It then, via the operators and from the electrical power system point of view, results finding only radial topologies. In order to show the effectiveness, usefulness, and the efficiency of the proposed method, a commonly used test system, 135-bus, and a practical system, a part of Sao Paulo state's distribution network, 7052 bus, are conducted. Results confirm the efficiency of the proposed algorithm that can find high quality solutions satisfying all the physical and operational constraints of the problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

n this paper we present a novel hybrid approach for multimodal medical image registration based on diffeomorphic demons. Diffeomorphic demons have proven to be a robust and efficient way for intensity-based image registration. A very recent extension even allows to use mutual information (MI) as a similarity measure to registration multimodal images. However, due to the intensity correspondence uncertainty existing in some anatomical parts, it is difficult for a purely intensity-based algorithm to solve the registration problem. Therefore, we propose to combine the resulting transformations from both intensity-based and landmark-based methods for multimodal non-rigid registration based on diffeomorphic demons. Several experiments on different types of MR images were conducted, for which we show that a better anatomical correspondence between the images can be obtained using the hybrid approach than using either intensity information or landmarks alone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis deals with the problem of efficiently tracking 3D objects in sequences of images. We tackle the efficient 3D tracking problem by using direct image registration. This problem is posed as an iterative optimization procedure that minimizes a brightness error norm. We review the most popular iterative methods for image registration in the literature, turning our attention to those algorithms that use efficient optimization techniques. Two forms of efficient registration algorithms are investigated. The first type comprises the additive registration algorithms: these algorithms incrementally compute the motion parameters by linearly approximating the brightness error function. We centre our attention on Hager and Belhumeur’s factorization-based algorithm for image registration. We propose a fundamental requirement that factorization-based algorithms must satisfy to guarantee good convergence, and introduce a systematic procedure that automatically computes the factorization. Finally, we also bring out two warp functions to register rigid and nonrigid 3D targets that satisfy the requirement. The second type comprises the compositional registration algorithms, where the brightness function error is written by using function composition. We study the current approaches to compositional image alignment, and we emphasize the importance of the Inverse Compositional method, which is known to be the most efficient image registration algorithm. We introduce a new algorithm, the Efficient Forward Compositional image registration: this algorithm avoids the necessity of inverting the warping function, and provides a new interpretation of the working mechanisms of the inverse compositional alignment. By using this information, we propose two fundamental requirements that guarantee the convergence of compositional image registration methods. Finally, we support our claims by using extensive experimental testing with synthetic and real-world data. We propose a distinction between image registration and tracking when using efficient algorithms. We show that, depending whether the fundamental requirements are hold, some efficient algorithms are eligible for image registration but not for tracking.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses initial efforts to develop a navigation system for ground vehicles supported by visual feedback from a mini aerial vehicle. A visual-based algorithm computes the ground vehicle pose in the world frame, as well as possible obstacles within the ground vehicle pathway. Relying on that information, a navigation and obstacle avoidance system is used to re-plan the ground vehicle trajectory, ensuring an optimal detour. Finally, some experiments are presented employing a unmanned ground vehicle (UGV) and a low cost mini unmanned aerial vehicle (UAV).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: This study assessed the efficacy of a closed-loop (CL) system consisting of a predictive rule-based algorithm (pRBA) on achieving nocturnal and postprandial normoglycemia in patients with type 1 diabetes mellitus (T1DM). The algorithm is personalized for each patient’s data using two different strategies to control nocturnal and postprandial periods. Research Design and Methods: We performed a randomized crossover clinical study in which 10 T1DM patients treated with continuous subcutaneous insulin infusion (CSII) spent two nonconsecutive nights in the research facility: one with their usual CSII pattern (open-loop [OL]) and one controlled by the pRBA (CL). The CL period lasted from 10 p.m. to 10 a.m., including overnight control, and control of breakfast. Venous samples for blood glucose (BG) measurement were collected every 20 min. Results: Time spent in normoglycemia (BG, 3.9–8.0 mmol/L) during the nocturnal period (12 a.m.–8 a.m.), expressed as median (interquartile range), increased from 66.6% (8.3–75%) with OL to 95.8% (73–100%) using the CL algorithm (P<0.05). Median time in hypoglycemia (BG, <3.9 mmol/L) was reduced from 4.2% (0–21%) in the OL night to 0.0% (0.0–0.0%) in the CL night (P<0.05). Nine hypoglycemic events (<3.9 mmol/L) were recorded with OL compared with one using CL. The postprandial glycemic excursion was not lower when the CL system was used in comparison with conventional preprandial bolus: time in target (3.9–10.0 mmol/L) 58.3% (29.1–87.5%) versus 50.0% (50–100%). Conclusions: A highly precise personalized pRBA obtains nocturnal normoglycemia, without significant hypoglycemia, in T1DM patients. There appears to be no clear benefit of CL over prandial bolus on the postprandial glycemia